# Update on the post-irradiation examinations on high Z materials from HRMT-27 and HRMT-42 experiments

E. Fornasiere, C. Torregrosa, N. Solieri, M. Calviani, A. Perillo and J. Busom Descarrega







### Content

- Context
- HRMT-27
  - Tantalum
  - Iridium
- HRMT-42
  - Tantalum
- Bonus: W-TiC



### Context



### HRMT-27: The experiment (2015)



- 13 rods of high-Z materials impacted by 440 GeV/c beam
- Irradiation performed in a ramped way to obtain material response at intermediate state before reaching AD-Target conditions
- Targets geometry and beam parameters adapted to recreate AD target





| Material | Max ΔT<br>(°C) | Max Tensile<br>Pressure<br>(GPa) |
|----------|----------------|----------------------------------|
| Ir       | 2200 °C        | 9 GPa                            |
| W        | 2000 °C        | 5.6 GPa                          |
| Mo/TZM   | 850 °C         | 1.3 GPa                          |
| Та       | 1850 °C        | 4.5 GPa                          |



#### Courtesy of C. Torregrosa

### HRMT-27: Targets after the experiment



Longitudinal cracks in **Iridium** at intermediate intensities.



- Tungsten targets present the larger amount of longitudinal cracks.
- Spall of fragments at the surface also took place in tungsten.



#### Tantalum

• No cracks were observed in Ta targets.









#### Preparation

#### 8 cross-sections



Preparation procedure by S. Forsetlokken



- Hot mounting in phenolic resin
- **Grinding** with grit papers (P500, P1200 and P2400)
- **Polishing** with diamond suspension (6 μm and 3 μm)
- Final polishing with colloidal silica suspension (0.025 μm)
  + 5% H2O2
- Intermediate etching in between each grinding and polishing step, with etching #66 from ASTM 407: sample immersion for 2' in 10 mL HF + 20 mL HNO3 + 30 mL HCl
- Removal from the resin



#### 1. Microstructure quantitative analysis

- X-ray diffraction
- Microstructure analysis from peak profile analysis with Rietveld software (MAUD)
- Residual stress measurements in cross-sectional planes
- Samples representative of three areas: Ref, Low T, Mid T and high T
- Measurements probing entire cross-sections



#### Microstructure analysis



#### Residual stress measurements





#### Microstructure imaging 2.



- Scanning Electron Microscope
- Backscattered electron detector
- Microstructure observable by channelling contrast
- Imaging in samples representative of the three areas: Ref, Low T, Mid T and high T
- And at three locations: Outer radius, intermediate and center
- >40 micrographs acquired



#### 2. Microstructure analysis



- Scanning Electron Microscope
- Electron backscattered diffraction
- Microstructure observable by inverse pole figure mapping
- Microstructure plastic deformation observable by misorientation mapping
- Samples representative of the three areas: Ref, Low T, Mid T and high T
- And at three locations: Outer radius, intermediate and center
- > 15 acquired EBSD mappings











12/21/2018

#### asqfoaisdfnote

• No evidence of microstructural differences after beam impacts



• Target showed macroscopic bending

Target was certainly impacted at highest intensity





• Original microstructure already deformed due to forming





Preparation

8 cross-sections



- Hot mounting in phenolic resin
- **Grinding** with grit papers (P500, P1200 and P2400)
- **Polishing** with diamond suspension (6  $\mu$ m and 3  $\mu$ m)
- Final polishing with colloidal silica suspension (0.025 μm) + 5% H2O2
- Removal from the resin



12/21/2018

| 2. Microstructure quantitative analysis | • | X-ray diffraction<br>Microstructure analysis from peak profile analysis with Rietveld<br>software (MAUD) |
|-----------------------------------------|---|----------------------------------------------------------------------------------------------------------|
|                                         | • | Residual stress measurements in cross-sectional planes                                                   |
|                                         | • | Samples representative of the three areas: REF, Low T, Mid T and High T                                  |
|                                         | ٠ | Measurements probing entire cross-sections                                                               |
|                                         |   |                                                                                                          |





## Scanning Electron MicroscopeSecondary electron imaging

#### Extremity samples

1.

Fracture imaging

#### Most solicited region samples











12/21/2018



12/21/2018

#### 2. Microstructure analysis



- Scanning Electron Microscope
- Electron backscattered diffraction
- Microstructure observable by inverse pole figure mapping
- Microstructure plastic deformation observable by misorientation mapping
- Microstructural damage quantifiable by KAM
- Samples: REF, #1, #2, #5, #6, #8, #9 and #10
- And at three locations: Outer radius, intermediate and center
- > 30 acquired EBSD mappings

#### Reference sample at center





#### High T sample: Slice 8 center











- No observable microstructure differences before and after thermal shock
- Iridium "brittle" response
- Cracking along rod axis
- Next steps: fractography



Fracture behavior at high strain rates in unirradiated Ir

Scapin, Martina, et al., *International Journal of Impact Engineering* 106 (2017): 191-201.

Original microstructure already deformed due to forming

Unknown detailed forming process



### HRMT-42: Target setup

#### **Scaled Prototype**

- Core of 8 mm diameter Ta rods (un-annealed)
- Embedded in a matrix made of compressed layers of Expanded Graphite (EG).
- Encapsulated in Ti-6V-4Al e-beam welded container

### **Conditions reached during the Experiment**

• Same beam parameters as in HRMT-27







#### #47 pulses were impacted (7·10<sup>13</sup> POT)

#### Accumulative heating

- Max temperature reached estimated in 2650 °C
- Estimated accumulative <u>time</u> <u>above 1600 °C = 14 s</u>
- Estimated accumulative <u>time</u> above 1000 °C = <u>5 mins</u>
- Estimated accumulative <u>time</u> above 800 °C = 15 mins



Courtesy of C. Torregrosa

### HRMT-42: Target PIE

#### X-ray tomography, ESRF (Grenoble)



#### Neutron tomography Neutra-PSI (Zurich)



#### Target Opening carried out at CERN

#### Metrology at CERN





**20**/21/2018

#### Courtesy of C. Torregrosa and E. Fornasiere





















Cheng, M., et al. *Acta Materialia*148 (2018): 38-48.





3. Microstructure quantitative analysis

- X-ray diffraction
- Microstructure analysis from peak profile analysis with Rietveld software (MAUD)
- Residual stress measurements in cross-sectional planes
- All samples were measured
- Measurements probing entire cross-sections





### HRMT-42: Remarks

• Many questions to answer, which require simulations – PIE – literature precise correlation:

#### Void size and distribution





#### Recrystallization

#### Void positioning









12/21/2018

#### Courtesy of C. Torregrosa

### Conclusions

- Several irradiated rods from HRMT-27 and HRMT-42 have been studied
- Sample preparation procedures established and optimized
- Microstructural properties available at different scales
- Cracking and spalling phenomena directly observed
- Recrystallisation process observed in Tantalum
- Discussion on going to understand phenomena and application to AD target design



### **Bonus track: W-TiC for PROTAD**



#### **PROTAD Target 5:**

<u>Core:</u> Ø 10 mm Ta + Ø 10 mm W + **W-1.1TiC** + Ø 10 mm Ir +Ø 2 mm Ta tube <u>Matrix:</u> Compressed EG





### **Bonus track: W-TiC for PROTAD**

- Two spare W-TiC samples for microstructure characterization
- One sample after GSMM and one sample before GSMM

#### Microstructure- IPF







### **Bonus track: W-TiC for PROTAD**



#### Grain size distribution



- Grain size increase with GSMM
- Coherent hardness decrease with GSMM
- Carbide growth with GSMM only at GBs
- Equiaxial and microstructure
- No grain preferential orientations



### Thanks for your attention. Questions?



### Spare slide: HRMT-42 Rod #9-2



DEPARTMEN

### Spare slide: HRMT-42 Rod #4-2

