Search for Long-lived Gluinos in Compressed SUSY Scenarios Gilson Correia Silva on behalf of the CMS collaboration ## Some CMS searches with Long-lived particles Searches for long-lived particles require different strategies depending on the particle lifetime e final products. - * New long-lived particles; https://doi.org/10.1016/j.physletb.2018.03.019 - *Stopped long-lived particles; https://doi.org/10.1007/JHEP05(2018)127 - * Heavy stable charged particles; - *New physics in events with displaced jets and MET; - *Long-lived particles with displaced vertices multijet events; - * Displaced leptons in e-mu final state; - *Long-lived particles decaying into displaced jets; - *Long-lived Gluinos in Compressed SUSY Scenarios. #### Motivation for the Search #### Why haven't we found SUSY yet? - Nature is not supersymmetric Proof will be everything but straight forward - SUSY cross-sections are too small Will require more data - SUSY masses are too large Will require more data Analyses are not sensitive to SUSY Will require a new analysis strategy **Compressed SUSY** #### Motivation for the Search - Natural solution to the electroweak hierarchy problem - Precision gauge coupling unification Which is the effect on the spectrum of supersymmetric masses? #### Simulation - Simplified model with 2 parameters - \rightarrow gluino mass: $m_{\tilde{g}}$ - \rightarrow mass difference between gluino and neutralino: Δm - Squark mass fixed to 40 TeV (compatible with $m_H=125\,{ m GeV}$) - LSP is mainly gaugino - Generated private MC with MadGraph+Pythia for - $\rightarrow m_{\tilde{g}}$: [250, 500, 750, 1000] GeV - $\rightarrow \Delta m$: [40, 60, 80, 100] GeV ## **CMS** Overall Length: 28,7 m Overall Diameter: 15 m Mass: 12500 t Magnetic field: 3.8 T Rate of eventos produced: ~ 1 GHz L1 trigger: ~ 100 KHz HLT: ~ 400 Hz ## Gluinos decay distance Primary Vertices (PVs): Reconstructed location of all particle collisions in the bunch crossing Secondary Vertices (SVs): Reconstructed location of all particle decays. Vertices are found using reconstructed tracks. Majority of the gluinos decay inside the tracker, this leads to reconstructed Secondary Vertices! | Signal $(m_{ ilde{g}}, \Delta m)$ | Fraction of gluinos (%) decaying in the range: | | | |-----------------------------------|--|---------|---------| | | < 1 cm | < 10 cm | < 1.2 m | | (250,40) | 9.3 | 55.2 | 99.1 | | (250,60) | 42.8 | 96.1 | 100 | | (750,60) | 63.0 | 99.7 | 100 | | (1000.100) | 99.9 | 100 | 100 | Silicon Tracker: PIXEL (blue) refers to silicon pixel detectors while TIB, TID, TOB and TEC (red) all refer to silicon strip detectors ## Quarks from gluino decay CMS reconstructs jets with Pt \geq 10 GeV. Very difficult to reconstruct all jets originated from gluino decays. # Signature - Moderate amount of MET - Secondary vertices with 2 soft jets ## Signature - Moderate amount of MET - Secondary vertices with 2 soft jets - Need hard ISR jet for triggering ## SV multiplicity Majority part of the signal events have SVs. We require the signal regions to have at least one SV. ## Jet-SV association We use jets and vertices reconstructed by CMS, associating each jet to one vertex. Gluino mass has small effect in the association of jets to SVs. SV2Jets – SV with 2 jets associated to it. SV1Jet – SV with 1 jet associated to it. #### Jet-SV association Mass difference between gluino and neutralino affects the association of jets to SVs because jets originated from gluino decays are more difficult to be reconstruct in events with lower Δm . ## Signal Regions - 1) Trigger (MET 170 GeV) - 2) MET > 350 GeV - 3) VetoLeptons SR1: #SV2Jets ≥ 1 SR2: #SV2Jets = 0 and $\#SV1Jet \ge 2$ SR3: #SV2Jets = 0 and #SV1Jet = 1 SR4: #SV2Jets = 0 and #SV1Jet = 0 ## Backgrounds - 1) Trigger (MET 170 GeV) - 2) MET > 350 GeV - 3) VetoLeptons - Quarks top and anti-top $(t\bar{t})$ + jets, - Boson $W (\rightarrow l\nu_l) + \text{jets}$, - Boson $Z (\rightarrow \nu \bar{\nu}) + \text{jets}$, - Multijet (QCD), - Rare (WW, ZZ, WZ, G+Jets, Drell-Yan+jets, Single Top). The four dominant backgrounds will be estimated using data-driven methods. ## Multivariate Analysis Cut-based approach is not sensitive at large gluino masses (low cross-section). We can improve it using multivariate methods! #### Outlook - The compressed scenario studied has a signature of difficult reconstruction. In general, we are only able to reconstruct part of the signal event's signature. - Jets are associated to secondary vertices in order to produce objects that have information about the gluino decay and help to discriminate the signal from the background. - Due the low analysis sensitivity for large gluino masses, we will make use of multivariate methods in order to improve the sensitivity. - Goal: We plan to have results ready for 2019. ## Backup ## MET X LeadingPVJetPt Dataset: Signal_750_80_Summer16 ## Backup #### **SV2Jets Variables** MinJetPt – Minimum Jet Pt MaxJetPt - Maximum Jet Pt DphiJJ – $\Delta \phi$ between the jets DetaJJ – Δ η between the Jets $DRJJ - \Delta R$ between the jets MJJ – Invariant dijet mass Chi2 – χ^2 of the SV recostruction Ndof – Number of Degrees of freedom in the SV reconstruction SVPt – Pt sum of the tracks used in the SV reconstruction SVError – SV position error Score – Sum of the score log of the two jets NumConst – Sum of the number of constituents of the two jets Reco Jet Reco SV Jet-SV Association ## Backup #### Associate Jets to Vertices - * use charged jet constituents to assign jet to vertex - * assume straight or curved track - *use constituent 3-momentum and point of closest approach (PCA) to leading PV to define pseudo track - * find the vertex closest to this track - * define score per vertex: constituent pT / PCA to the vertex - * associate jet to vertex with highest score Jet close to 2 vertices