Central exclusive production in LHCb

Murilo Rangel on behalf of the LHCb Collaboration

Publications

1. Measurement of the exclusive Y production cross-section in pp collisions at $\sqrt{s} = 7$ TeV and 8 TeV

LHCb Collaboration (Roel Aaij (CERN) *et al.*). May 29, 2015. 21 pp. Published in **JHEP 1509 (2015) 084** LHCB-PAPER-2015-011, CERN-PH-EP-2015-123 DOI: <u>10.1007/JHEP09(2015)084</u> e-Print: <u>arXiv:1505.08139</u> [hep-ex] | PDF

<u>References | BibTeX | LaTeX(US) | LaTeX(EU) | Harvmac | EndNote</u> <u>CERN Document Server; ADS Abstract Service; Link to Article from SCOAP3</u> Data: <u>INSPIRE | HepData</u>

Detailed record - Cited by 72 records 504

2. Observation of charmonium pairs produced exclusively in pp collisions

LHCb Collaboration (R. Aaij (NIKHEF, Amsterdam) *et al.*). Jul 22, 2014. 20 pp. Published in **J.Phys. G41 (2014) no.11, 115002** CERN-PH-EP-2014-174, LHCB-PAPER-2014-027, CERN-PH-EP-2014-174-LHCB-PAPER-2014-027 DOI: <u>10.1088/0954-3899/41/11/115002</u> e-Print: <u>arXiv:1407.5973</u> [hep-ex] | PDF

<u>References | BibTeX | LaTeX(US) | LaTeX(EU) | Harvmac | EndNote</u> <u>CERN Document Server; ADS Abstract Service</u>

Detailed record - Cited by 28 records

3. Updated measurements of exclusive J/ψ and ψ (2S) production cross-sections in pp collisions at $\sqrt{s} = 7$ TeV

LHCb Collaboration (Roel Aaij (NIKHEF, Amsterdam) et al.). Jan 14, 2014. 20 pp.

Published in J.Phys. G41 (2014) 055002

CERN-PH-EP-2013-233, LHCB-PAPER-2013-059

DOI: 10.1088/0954-3899/41/5/055002

e-Print: arXiv:1401.3288 [hep-ex] | PDF

<u>References</u> | <u>BibTeX</u> | <u>LaTeX(US)</u> | <u>LaTeX(EU)</u> | <u>Harvmac</u> | <u>EndNote</u> <u>CERN Document Server</u>; <u>ADS Abstract Service</u>; <u>ADS Abstract Service</u> Data: <u>INSPIRE</u> | <u>HepData</u>

Detailed record - Cited by 127 records 1001

4. Exclusive J/ψ and ψ (2S) production in pp collisions at $\sqrt{s} = 7$ TeV

LHCb Collaboration (R Aaij (NIKHEF, Amsterdam) *et al.*). Jan 29, 2013. 17 pp. Published in **J.Phys. G40 (2013) 045001** CERN-PH-EP-2013-005, LHCB-PAPER-2012-044 DOI: <u>10.1088/0954-3899/40/4/045001</u> e-Print: <u>arXiv:1301.7084</u> [hep-ex] | PDF

 Renafae 2018
 References | BibTeX | LaTeX(US) | LaTeX(EU) | Harvmac | EndNote

 M. Rangel
 Detailed record - Cited by 128 records [0]

Submitted

2. Central exclusive production of J/ψ and $\psi(2S)$ mesons in pp collisions at $\sqrt{s} = 13$ TeV

LHCb Collaboration (Roel Aaij (NIKHEF, Amsterdam) *et al.*). Jun 11, 2018. 27 pp. Published in **Submitted to: JHEP** LHCB-PAPER-2018-011, CERN-EP-2018-152 e-Print: <u>arXiv:1806.04079</u> [hep-ex] | PDF

<u>References</u> | <u>BibTeX</u> | <u>LaTeX(US)</u> | <u>LaTeX(EU)</u> | <u>Harvmac</u> | <u>EndNote</u> <u>CERN Document Server</u>; <u>ADS Abstract Service</u>

Detailed record - Cited by 1 record

Preliminary

Information Discussion (0) Files					
L F	ICb Note				
Report number	LHCb-CONF-2018-003 ; CERN-LHCb-CONF-2018-003				
Title	study of coherent J/ψ production in lead-lead collisions at $\sqrt{s_{ m NN}}=5~{ m TeV}$ with the LHCb experiment				
Corporate author(s)	The LHCb Collaboration				
Collaboration	LHCb Collaboration				
Submitted to	The 27th International Conference on Ultrarelativistic Nucleus-Nucleus Collisions, Venice, Italy, 13 - 19 May 2018				
Submitted by	cindy.denis@cern.ch on 25 May 2018				
Subject category	Particle Physics - Experiment				
Accelerator/Facility, Experiment	CERN LHC ; LHCb				
Free keywords	QCD ; Forward Physics ; relativistic heavy ion physics				
Abstract	Coherent production of $J\psi$ mesons is studied in lead-lead collision data at a nucleon-nucleon centre-of-mass energy of 5 TeV collected by the LHCb experiment. The data set corresponds to an integrated luminosity of about $10\mu b^{-1}$. The $J\psi$ mesons are reconstructed in the dimuon final state, where the muons are detected within the pseudorapidity region $2.0 < \eta < 4.5$. The $J\psi$ mesons are required to have transverse momentum $p_{\rm T} < 1$ GeV and rapidity $2.0 < y < 4.5$. The cross-section times branching fraction within this fiducial region is measured to be $\sigma = 5.3 \pm 0.2$ (stat) ± 0.5 (syst) ± 0.7 (lumi) mb. The cross-section is also measured in five bins of $J\psi$ rapidity. The results are compared to predictions from phenomenological models.				

Corresponding record in: Inspire

Email contact(s) : murilo.rangel@cern.ch

Strategy

- $J\!/\psi \rightarrow \mu^+\mu^-$ events with no additional activity from the same vertex
- muon selection
 - $p_{\mathrm{T}\,\mu} > 500 \; \mathrm{MeV}$
 - $2.0 < \eta_{\mu} < 4.5$
- $J\!/\psi$ selection
 - $p_{{
 m T}\,J\!/\psi} < 1~{
 m GeV}$

Using data taken in lead-lead collisions at $\sqrt{s_{NN}} = 5.02 \,\text{TeV}$ in 2015

b>R_A+R_B

invariant mass fit discriminate γ γ →μ⁺μ⁻ process from J/ψ production *non-resonant* Exponential times straight line J/ψ Double sided Crystal Ball function ψ(2S) Double sided Crystal Ball function with all parameters apart from normalisation and mean constrained to be identical to J/ψ

diagram from Phys.Rept. 458 (2008) 1-171

 transverse momentum fit to determine the number of coherent events non-resonant STARlight template, normalisation is fixed by Gaussian constraint to the result of the mass fit

incoherent J/ ψ *production* STARlight template, this also accounts for feeddown $\psi(2S) \rightarrow J/\psi X$

coherent J/ ψ production STARlight template

The STARlight templates are from the generated events smeared with a resolution model

$$\vec{p_{\mu}} = G(p_x, 10 \,\mathrm{MeV}) \vec{e_x} + G(p_y, 10 \,\mathrm{MeV}) \vec{e_y} + G(p_z, 10 \,\mathrm{MeV}) \vec{e_z}$$
 (1)

LHCb preliminary

$\sigma = 5.27 \pm 0.21 \pm 0.49 \pm 0.68 \, \mathrm{mb}$

- The analysis is repeated in bins of half unit rapidity $y_{J/\psi}$
- Uncertainties for statistics, systematic and luminosity are of comparable magnitude
- The LHCb acceptance is interesting to discriminate between the models

LHCb-CONF-2018-003

Source	Relative uncertainty $(\%)$
Reconstruction efficiency	2.1 – 4.5
Selection efficiency	3.2
Hardware trigger efficiency	3.0
Software trigger efficiency	1.6 - 5.3
Momentum smearing	3.3
Mass fit model	3.9
Feed-down background	5.8
Branching Fraction	0.6
Luminosity	13.0

High Rapidity Shower Counters for LHCb – HERSCHEL

- installed at the end of 2014 \rightarrow increase pseudorapidity coverage
- 5 stations with 4 scintillators with PMT
- able to detect forward particle showers and veto events wth these

M. F

Rena

Renafae 2018

M. Rangel

Collision signatures at LHCb

Renafae 2010

Collision signatures at LHCb

Renafae 2018

Dimuon candidates after all cuts have been applied before (black) and after (red) using HeRSCheL information.

Summary

- \rightarrow Extensive central exclusive production program at LHCb
- \rightarrow Important tests of QCD in the forward region
- → Active program to study CEP in pp, pPb and PbPb
 + odderon and glueball searches
 - + more final states
 - + other diffractive production

+ ...

THANK YOU!!!!!

Central Exclusive Production (CEP)

Motivation

- colorless object production (X) in a very clean environment: theory vs data
- understanding of soft \rightarrow hard QCD scale
- input to phenomenological models: saturation, pomeron/oderon interaction, ...
- sensitive to low-x gluon density in the proton down to 5x10⁻⁶

LHCb Detector

JMPA30(2015)1530022

LHCb is a single arm spectrometer fully instrumented in the forward region (2.0< η <5.0) Designed for heavy flavour physics \leftrightarrow Explored for general purpose physics

Tracking (magnet) 0.4%-0.6% momentum resolution (0.2-100 GeV)

Renafae 2018

M. Rangel

LHCb detector

VELO

- \rightarrow surrounds the interaction point
- →no magnetic field
- →allows backward tracks $(-3.5 < \eta < -1.5)$

LHCb detector

LHCb datasets

Data used in the results presented in these slides: $2010 \rightarrow L=36/pb$ at 7 TeV $2011 \rightarrow L=1/fb$ at 7 TeV $2012 \rightarrow L=2/fb$ at 8 TeV $2015 \rightarrow L=204/pb$ at 13 TeV

LHCb Integrated Recorded Luminosity in pp, 2010-2016

Pile-up conditions $P(N) = e^{\mu}\mu^{N}/N!$ μ = average number of visible interactions

 $2010 \rightarrow \mu \sim 1.6$, P(1)~21% $2011 \rightarrow \mu \sim 1.4$, P(1)~25% $2012 \rightarrow \mu \sim 1.7$, P(1)~19% $2015 \rightarrow \mu \sim 1.1$, P(1)~35%

General Strategy

- -LHCb has no proton tag detectors
 - \rightarrow use regions void of particle production (gaps)
- -Trigger on low multiplicity events
 - \rightarrow using SPD and/or tracks (future results will use Herschel at Run-II)
- -Select candidate and no other activity in the detector
 - → Detector acceptance: $2.0 < \eta$ (track) < 4.5
 - → Require no backward tracks: $-1.5 < \eta < -3.5$ (+Herschel at Run-II)

-Backgrounds:

- → feed-down: if X object is a resonance, it could be a decay product of Y Ex: In J/ψ CEP: $\chi_c^0 \rightarrow J/\psi + \gamma$
- → inelastic (proton dissociation): p_{τ}^2 distribution is used to fit CEP and non-CEP → other diffractive production: estimated with event generators

J/ψ and $\psi(\text{2S})$ - 7 TeV

2011 dataset with L=1/fb

Signal fit – Crystal-Ball function (ad-hoc asymmetric function) Background fit - expoential

Template fit to data

- \rightarrow Inelastic background: exponential (HERA extrapolation $b_{in} \sim 1 \text{ GeV}^{-2}$)
- \rightarrow Feed-down background: data driven from reconstructed decays
- → Signal: exponential (HERA $b_{el} \sim 6 \text{ GeV}^{-2}$)

→ J/ψ feed-down: $(\chi_{c0}, \chi_{c1}, \chi_{c2}), \psi$ (2S) → ψ (2S) feed-down: $X(3872), \chi_c$ (2P)

Template fit to data

- \rightarrow Inelastic background: exponential (HERA b_{in}~ 1 GeV⁻²)
- \rightarrow Feed-down background: data driven from reconstructed decays
- → Signal: exponential (HERA b_{el}~ 6 GeV⁻²)

→ J/ψ feed-down: $(\chi_{c0}, \chi_{c1}, \chi_{c2}), \psi$ (2S) → ψ (2S) feed-down: $X(3872), \chi_c$ (2P)

Cross-section measurement

$$\left(\frac{d\sigma}{dy}\right)_{i} = \frac{\rho N_{i}}{A_{i}\epsilon_{i}\Delta y(\epsilon_{single}L)}$$

For each bin i, we have

- $\rightarrow N_i$ is the number of candidates
- ${\boldsymbol{ \rightarrow }}\,\rho$ is the purity
- $\rightarrow A_i$ is the acceptance
- $\rightarrow \Delta y$ is the bin width
- \rightarrow *L* is the integrate luminosity
- $\rightarrow \epsilon_i$ is the efficiency for selecting single interaction events

Correlated uncertainties expressed as a percentag	e of the final result
$\epsilon_{ m sel}$	1.4%
 Purity determination (J/ψ)	2.0%
 Purity determination $(\psi(2S))$	13.0%
$\epsilon_{\rm single}$	1.0%
*Acceptance	2.0%
*Shape of the inelastic background	5.0%
*Luminosity	3.5%
	0.407

Cross section times BF to two muons with $2.0 < \eta < 4.5$

 $\sigma(J/\psi) = 291 \pm 7(\text{stat}) \pm 19(\text{syst}) \text{ pb}$

 $\sigma(\psi(2S)) = 6.5 \pm 0.9(\text{stat}) \pm 0.4(\text{syst}) \text{ pb}$

in good agreement with predictions

 G&M:
 Phys. Rev. C84 (2011) 011902

 JRMT:
 JHEP 1311 (2013) 085

 M&W:Phys.
 Rev. D78 (2008) 014023

 Sch&SPhys.
 Rev. D76 (2007) 094014

 Starlight:
 Phys. Rev. Lett. 92 (2004) 142003

 Superchic:
 Eur. Phys. J. C65 (2010) 433

$$\frac{d\sigma}{dy}_{pp \to pJ/\psi p} = r_+ k_+ \frac{dn}{dk_+} \sigma_{\gamma p \to J/\psi p}(W_+) + r_- k_- \frac{dn}{dk_-} \sigma_{\gamma p \to J/\psi p}(W_-)$$

 dn/dk_{\pm} are photon fluxes for photons of energy $k_{\pm} \approx (M_{J/\psi}/2) \exp(\pm |y|)$ $(W_{\pm})^2 = 2k_{\pm}\sqrt{s}$, and r_{\pm} are absorptive corrections

2015 dataset with L=204/pb

LHCb-CONF-2016-007

Herschel requirement

Using non-resonant DiMuon events, high multiplicity and high $p_{\tau} J/\psi$

M. Rangel

Background fractions

Non-resonant estimated from DiMuon mass $\rightarrow 0.009$

Feed-down estimated using data \rightarrow 0.059 (compared to 0.101 at 7 TeV)

Proton dissociation extracted from fit to p_{T}^{2} after subtracting non-resonant and feed-down background

Background fractions

Non-resonant estimated from DiMuon mass $\rightarrow 0.175$

Feed-down neglected in this preliminary result

Proton dissociation extracted from fit to p_{τ}^{2} after subtracting non-resonant and feed-down background

34

Only W_{\downarrow} solution possible Good agreement with H1 extrapolation

Exclusive Y production

Run-I data set L=1/fb at 7 TeV and L=2/fb at 8 TeV

+ Analysis strategy similar to J/ψ

Background fractions

Non-resonant estimated from DiMuon mass

Feed-down estimated using simulation and data input $\chi_b \rightarrow Y + \gamma$

Proton dissociation extracted from fit to p_{τ}^{2} using sWeights

Signal template is obtained from SuperChiC

$$\sigma(pp \to p\Upsilon(1S)p) = 9.0 \pm 2.1 \pm 1.7 \text{ pb}$$

$$\sigma(pp \to p\Upsilon(2S)p) = 1.3 \pm 0.8 \pm 0.3 \text{ pb}$$

Rapidity dependence in agreement with NLO calculation

Photon-proton cross-section extrapolated from measurement can be compared with different phenomenological models

J.Phys.G41 (2014)115002

Charmonium pairs

2011 dataset with L=1/fb 2012 dataset with L=2/fb

Trigger

DiMuon (p_{τ} (muon)>400 MeV) in coincidence with SPD multiplicity < 10

Candidate selection

Exactly four forward tracks (three identified as muons)

Renafae 2018

M. Rangel

Mass of the second pair when the first pair has a mass consistent with the J/ ψ or the ψ (2S)

Extrapolation of exponential fit up to 2500 MeV is used to estimate non-resonant background => $0.3\pm0.1(0.07\pm0.02)$ for J/ ψ (ψ (2S))

Renafae 2018

M. Rangel

Charmonium pairs

Feed-down from J/ ψ ψ (2S) as J/ ψ J/ ψ estimated from data => 2.9±2.0

Proton dissociation estimated from p_T^2 fit using events with DiMuon mass = [6,9] GeV

Charmonium pairs

Signal estimated using a fit to data

Different signal slope from double charmonium to single charmonium

Renafae 2018

M. Rangel

Candidates

37 J/ ψ -J/ ψ

- **5** J/ψ-ψ(2S)
- **0** $\psi(2S)-\psi(2S)$

Cross-section measurements without proton dissociation correction Limits calculated at 90% CL

$$\begin{array}{ll} \sigma^{J/\psi\,J/\psi} &= 58 \pm 10({\rm stat}) \pm 6({\rm syst})\,{\rm pb}, \\ \sigma^{J/\psi\,\psi(2S)} &= 63^{+27}_{-18}({\rm stat}) \pm 10({\rm syst})\,{\rm pb}, \\ \sigma^{\psi(2S)\psi(2S)} &< 237\,{\rm pb}, \\ \sigma^{\chi_{c0}\chi_{c0}} &< 69\,{\rm nb}, \\ \sigma^{\chi_{c1}\chi_{c1}} &< 45\,{\rm pb}, \\ \sigma^{\chi_{c2}\chi_{c2}} &< 141\,{\rm pb}, \end{array} \qquad \begin{array}{l} \frac{\sigma(J/\psi\,\psi(2S))}{\sigma(J/\psi\,J/\psi)} = 1.1^{+0.5}_{-0.4} \\ \frac{\sigma(\psi(2S))}{\sigma(J/\psi)} = 0.17 \pm 0.02 \\ \end{array}$$

$$\sigma^{J/\psi J/\psi} / \sigma^{J/\psi} |_{\text{exclusive}} = (2.1 \pm 0.8) \times 10^{-3}$$

$$\sigma^{J/\psi J/\psi} / \sigma^{J/\psi} |_{\text{inclusive}} = (5.1 \pm 1.0 \pm 0.6^{+1.2}_{-1.0}) \times 10^{-4}$$

- Data collected in 2010 (L=36/pb)

Number of forward tracks when no backward tracks

Non-resonant DiMuon

DiMuon selection

Candidates of J/ ψ and ψ (2S) are vetoed Muon $p_{\tau} > 80$ MeV DiMuon Mass > 2.5 GeV DiMuon $p_{\tau} < 0.9$ GeV

Background

Muon mis-id: random triggers without muon id cuts Diffractively produced DiMuon contribution estimated by POMWIG Inelastic production estimated using LPAIR and normalized to data

 $\sigma_{pp \to p\mu^+\mu^-p} (2 < \eta_{\mu^+}, \eta_{\mu^-} < 4.5; m_{\mu^+\mu^-} > 2.5 \text{ GeV/c}^2) = 67 \pm 10 \pm 7 \pm 15 \text{ pb}$ 42 pb (LPAIR prediction)

Analysis update is ongoing.

- \rightarrow Same data as non-resonant DiMuon
- \rightarrow J/ ψ candidate plus one photon (E_r>200 MeV)

+ Exclusive spectrum estimated by SuperChic fitted to data + Inelastic contamination higher than other CEP (60%)

M. Rangel

Analysis update is ongoing.

Phil Ilten's slides – MPI at LHC

LHCb Data

LHCb Integrated Luminosity pp collisions 2010-2012

>90% data taking efficiency >99% DQ efficiency 2010 \rightarrow 37/pb at $\sqrt{s} = 7$ TeV 2011 \rightarrow 1.0/fb at at $\sqrt{s} = 7$ TeV 2012 \rightarrow 2/fb at at $\sqrt{s} = 8$ TeV

M. Rangel

.

	Predictions [pb]	$\sigma_{pp \to J/\psi (\to \mu^+ \mu^-)}$	$\sigma_{pp \to \psi(2S)(\to \mu^+ \mu^-)}$
[12]	Gonçalves and Machado	275	
[11]	Starlight	292	6.1
[7]	Motyka and Watt	334	
[10]	SUPERCHIC	396	
[13]	Schäfer and Szczurek	710	17
	LHCb measured value	$307 \pm 21 \pm 36$	$7.8\pm1.3\pm1.0$

- [10] L. A. Harland-Lang, V. A. Khoze, M. G. Ryskin, and W. J. Stirling, *Central exclusive* χ_c meson production at the Tevatron revisited, Eur. Phys. J. C65 (2010) 433, arXiv:0909.4748.
- [11] S. R. Klein and J. Nystrand, Photoproduction of quarkonium in proton-proton and nucleus-nucleus collisions, Phys. Rev. Lett. 92 (2004) 142003.
- [12] V. P. Gonçalves and M. V. T. Machado, Vector meson production in coherent hadronic interactions: an update on predictions for RHIC and LHC, Phys. Rev. C84 (2011) 011902, arXiv:1106.3036.
- [13] W. Schäfer and A. Szczurek, Exclusive photoproduction of J/ψ in proton-proton and proton-antiproton scattering, Phys. Rev. D76 (2007) 094014, arXiv:0705.2887.
- [7] L. Motyka and G. Watt, Exclusive photoproduction at the Fermilab Tevatron and CERN LHC within the dipole picture, Phys. Rev. D78 (2008) 014023, arXiv:0805.2113.