Positron Regeneration F. Collamati

on behalf of the LEMMA Collaboration

Muon Collider Workshop - 1/3 07 2018 - Padova

Challenges

The positron source

The Positron Source

- Given the very low cross section of the muon production process, a very intense positron source is needed $(10^{18} e^+/s @T, ~FCCee)$
- Moreover, a key feature of the LEMMA scheme is the **recirculation** of the positron beam to have it interact several times in the target thus enhancing the production
 - Monte Carlo simulations suggest that ~3% of primary positrons are lost due to interaction in the target

The Positron Source

- Given the very low cross section of the muon production process, a very intense positron source is needed (10¹⁸ e⁺/s @T, ~FCCee)
- Moreover, a key feature of the LEMMA scheme is the recirculation of the positron beam to have it interact several times in the target thus enhancing the production
 - Monte Carlo simulations suggest that ~3% of primary positrons are lost due to interaction in the target

Collection Scheme

Collection scheme

Collection scheme

Exiting Tungsten

e⁺

 e^+

Exiting Tungsten

e⁺

Exiting Tungsten

Collection Efficiency?

Collection efficiency deeply depends on:

Collection efficiency deeply depends on:

The amount of positrons produced in the Tungsten

Collection efficiency deeply depends on:

The amount of positrons produced in the Tungsten

&

The **quality** of the produced positrons

Collection efficiency deeply depends on:

The **amount** of positrons produced —> thicker target in the Tungsten

&

The quality of the produced positrons

Collection efficiency deeply depends on:

The amount of positrons produced —> thicker target in the Tungsten

&

The quality of the produced positrons

> Quality criteria: Energy in (5-20) MeV Emission pos. <0.5 cm Emission angle <0.5 rad

Collection efficiency deeply depends on:

The amount of positrons produced in the Tungsten

&

+ Power load on tungsten, self absorption... thicker target Conflicting requirements <-- - '

The quality of the produced positrons

Quality criteria: Energy in (5-20) MeV Emission pos. <0.5 cm Emission angle <0.5 rad

Collection efficiency deeply depends on:

The amount of positrons produced in the Tungsten

&

+ Power load on tungsten, self absorption... Conflicting thicker target requirements Which Tungsten thickness maximizes the collection efficiency? **€- -'**

The quality of the produced positrons

Quality criteria: Energy in (5-20) MeV Emission pos. <0.5 cm Emission angle <0.5 rad

Collection efficiency deeply depends on:

The amount of positrons produced in the Tungsten

&

thicker target

The quality of the produced positrons

Quality criteria:
Energy in (5-20) MeV
Emission pos. <0.5 cm
Emission angle <0.5 rad

* The **Geant4** simulation was performed variating the Tungsten thickness from 1 to 10 X_0

* For each configuration the fraction of positrons matching each requirement was evaluated

- The Geant4 simulation was performed variating the Tungsten thickness from 1 to 10 X₀

Positrons matching each cut

For each configuration the fraction of positrons matching each requirement was evaluated

- The Geant4 simulation was performed variating the Tungsten thickness from 1 to 10 X₀

Positrons matching each cut

* For each configuration the fraction of positrons matching each requirement was evaluated

Quality cuts: - Energy in (5-20) MeV Emission pos. <0.5 cm

Emission angle <0.5 rad

- * The **Geant4** simulation was performed variating the Tungsten thickness from 1 to 10 X₀
- * For each configuration the fraction of positrons matching each requirement was evaluated

- * The **Geant4** simulation was performed variating the Tungsten thickness from 1 to 10 X₀
- * For each configuration the fraction of positrons matching each requirement was evaluated

Power Load on Tungsten

 In order to produce a significant flux of muons, the positron beam must have the highest intensity achievable

- In order to produce a significant flux of muons, the positron beam must have the highest intensity achievable
 - With a beam current of 250mA the Power hitting the Beryllium target is expected to be of about 11 GW

- In order to produce a significant flux of muons, the positron beam must have the highest intensity achievable
 - With a beam current of 250mA the Power hitting the Beryllium target is expected to be of about 11 GW
 - Some fraction of this power will then involve also the Tungsten target

- In order to produce a significant flux of muons, the positron beam must have the highest intensity achievable
 - With a beam current of 250mA the Power hitting the Beryllium target is expected to be of about 11 GW
 - Some fraction of this power will then involve also the Tungsten target

→ The Power on the Tungsten target deeply depends on its thickness

W thickn.	E	Ρ		100 -
nX ₀	J	MW	(MM)	90 -
1	3	0,2		80 -
2	21	1,0		70 –
3	58	2,9		10
4	137	6,9		60 -
5	235	11,7		50 -
6	366	18,3		40 -
7	573	28,7		30 -
8	771	38,6		20 -
9	948	47,4		20
10	1092	54,6		10 -
Tungsten Entering P ~100 MW				0 🕞
Primary Beam P ~11 GW			$X_0^W = 0.3$	504 cm

Positrons Percentage wrt Primary

% of "good" positrons wrt primary positrons

Positrons Percentage wrt Primary

 Peculiar aspects of the LEMMA scheme are recirculation

→ It is thus crucial to **minimise** the positron **losses** in the target

Peculiar aspects of the LEMMA scheme are high intensity positron source and positron beam

- Peculiar aspects of the LEMMA scheme are high intensity positron source and positron beam recirculation
 - → It is thus crucial to **minimise** the positron **losses** in the target
- Bremsstrahlung photons produced by the positron beam in the target can be exploited to produce secondary positrons in a dedicated absorber
 → These positrons can than be collected, accelerated and injected back into the main beam to compensate its losses

- Peculiar aspects of the LEMMA scheme are high intensity positron source and positron beam recirculation
 - → It is thus crucial to **minimise** the positron **losses** in the target
- Bremsstrahlung photons produced by the positron beam in the target can be exploited to produce secondary positrons in a dedicated absorber
 → These positrons can than be collected, accelerated and injected back into the main beam to compensate its losses
- A Monte Carlo simulation has been developed to identify the best absorber for such a purpose
 → 7X₀ of Tungsten gives the maximal yield of "good" positrons, but with a remarkable power load (~30Mw). A perhaps better compromise could be 3X₀ (P~3MW)

- Peculiar aspects of the LEMMA scheme are high intensity positron source and positron beam recirculation
 - → It is thus crucial to **minimise** the positron **losses** in the target
- Bremsstrahlung photons produced by the positron beam in the target can be exploited to produce secondary positrons in a dedicated absorber
 → These positrons can than be collected, accelerated and injected back into the main beam to compensate its losses
- A Monte Carlo simulation has been developed to identify the best absorber for such a purpose
 → 7X₀ of Tungsten gives the maximal yield of "good" positrons, but with a remarkable power load (~30Mw). A perhaps better compromise could be 3X₀ (P~3MW)

Simulation of the collection + accelerator complex is needed

backup

Tungsten exiting time distribution for produced positrons

Effect of the size of the original positron beam

