14 TeV Muon Collider LHC, MAP, and LEMC

David Neuffer

July 2018

*

Next Heavy Lepton Collider

- up to ~14 TeV in LHC tunnel
- Needs muon source
 - PS or new MW proton Linac/storage ring
 - cooling ...
 - or LEMC??
- Affordable !!
- neutrino radiation
 - for 14 TeV in LHC collider
- > Comments on (45 GeV $e^+ + e^-$) source
 - interesting problems
 - Liouville ...

3

- MAP produced initial designs for muon storage ring neutrino sources and heavy lepton colliders
 - -including initial beam delivery designs for mu2e and nuSTORM
- P5 happened MAP did not fit 2013 physics priorities
 - too ambitious for US resources >>

US Flagship is DUNE

HEPAP 2020

14 TeV "Next Muon Collider" 7×7 TeV

- CERN needs world-class collider
- Use LHC tunnel
 - Fill with accelerator and collider ring(s)
- > Result:
 - 7 x 7 TeV collider
- Reuses existing infrastructure
 - ~100 m deep tunnel
 - cost possible ?

Must add a muon source

high intensity

Shiltsev & Neuffer, IPAC 18

- Possible beam sources
 - proton based
 - CERN PS ~0.13 MW
 - 24 GeV
 - 6 bunches/1.2s
 - 5Hz
 - new MW scale proton source (~MAP)
 - 5—8 GeV linac + storage ring
 - 5Hz
 - Electron based Boscolo et al.
 - $e^+-e^- \rightarrow \mu^+ \mu^-$
 - 45 GeV $e^+ \rightarrow 22$ GeV $\mu^+ \mu^-$
 - 2.2 kHz
 - no cooling ...

- Proton-based source uses MAP-like cooling system
 - ~1 km long single pass
 - •~1–2 G\$
 - verified by simulation
 - ε_{t,N} →25 μ; ε_L → 60 mm

- Collect parameters from various scenarios
 - limit μ to ~10¹³/s
 - T_μ= 0.15s
- Accelerate in LHC tunnel
- Collider in tunnel
 - small β_t lattice
 - 800 luminosity turns (n_t)

$$L = \frac{f_o n_B n_t N_{\mu^+} N_{\mu^-} \gamma}{4\pi\varepsilon_{t,N} \beta_t^*}$$

Collider scenarios:

Parameter	"PS"	"MAP"	"LEMC"
Luminosity cm ⁻² s ⁻¹	1.2-10 ³³	3.5-10 ³⁵	2.4-10 ³²
Beam δE/E	0.1%	0.1%	0.2%
Rep rate, Hz	5	5	2200
N _µ /bunch	1.2·10 ¹¹	2·10 ¹²	4.5×10 ⁷
n _b	1	1	1*
$\epsilon_{t,N}$ mm-mrad	25	25	0.04
β^* , mm	1	1	0.2
σ*(IR), μm	0.6	0.6	0.011
Bunch length, m	0.001	0.001	0.0002
μ production source	24 GeV p	8 GeV p	45 GeV e+
p or e/pulse	8·10 ¹²	2·10 ¹⁴	3.10 ¹³
Driver beam power	0.15MW	1.3MW	40 MW
Acceleration,	1-3.5, 3.5- 7 RCS	1-3.5, 3.5- 7 RCS	75 GV, RLA 100 turn
v rad. (unmitigated)	0.02	0.30	0.003 mŠv/y r

HEPAP 2020

Acceleration ...

\succ 7 TeV μ lifetime = 0.15 s

- RCS frequencies are manageable: 5 / 20 Hz
 - high-field fixed magnets + ±2T rapid-cycling
 - •~18GV rf
- could also use RLA
 - fixed field magnets
 - nonscaling FFAG arcs ??
- LEMC with 2 kHz µ source needs fixed-field accelerator
 - 20 turns \rightarrow 350GV rf
 - 100 turns \rightarrow 70GV

• LHC = 11 kHz

-					_
dB_{pls}/dt , T/s	180	52	112	615	
τ_{ramp} , ms	42	76	34	2.6	
D_{pls} , 1	3.8	2.0	1.9	0.8	

> Affordable?

 according to Shiltsev cost model (JINST 9 T07002 (2014)):

$$TPC \cong \alpha \left(\frac{L}{10\,km}\right)^{\frac{1}{2}} + \beta \left(\frac{E_{cm}}{1TeV}\right)^{\frac{1}{2}} + \gamma \left(\frac{P}{100\,MW}\right)^{\frac{1}{2}}$$

• $\alpha \cong 2B$ \$ for civil construction,

 $\beta \cong$ 1, 2 or 10 B\$ for NC, SC magnets or SRF

- γ≈ 2B\$ wall plug power
 - ~9 G\$
 - after ~3 G\$ savings from using exiting tunnel(s)
- > LEMC case ?
 - Larger power, rf ?
 - needs further design

Figure 4: Cost estimates of various future colliders.

HEPAP B. King PAC 99 2020 B. King PAC 99 Johnson et al. CERN 99-12

 Decay neutrinos are emitted with a 1/γ angle

 $h \cong 2R \,\theta_{\rm rms} = 2R \,/\, \gamma_{\mu}$

> 10²⁰ µ/yr (10¹³µ/beam/s)

 $N_{\nu} = 2n_B N_{\mu} f_0 N_s P_{decay}$

 $Dose \cong \frac{N_{\nu}}{2\pi hR} \sigma_{\nu-N} 10^3 N_A E_{\nu}$

- Dose is ~0.15 mSv/yr/beam
 - 7TeV µ, D=100m, 36km
 CERN LHC limit is ~1mSv/yr

v-Radiation from a μ^+ - μ^- Collider

v-Radiation appears in a disk of thickness ~R/ γ at a radius R around the collider (±1.5m thick at ~30km from a 4 TeV Collider)

 $\sigma_{\nu} \cong 7 \cdot 10^{-40} E_{\nu} (TeV) m^2$

E.≃E./3

$$Dose \cong 0.57 \frac{N_{\mu}' E_{\mu}^{3}}{R_{x}^{2}} mSv / year$$

1 rem/yr = 6.25·10⁴ TeV/kg/yr 1mSv/yr= 6.25·10³ TeV/kg/yr

v,v*

Oddities of the neutrino radiation

≻ 100 m deep ring→

HFPΔ**P**

2020

- R=36km band, 0.5m thick
 - μ^+ and μ^- bands differ
- LHC-100 m tilted ring
 - tilt into Lake Geneva and Jura
 - effectively a bit deeper ...

 $\nu-Radiation appears in a disk of thickness ~R/ <math display="inline">\gamma$ at a radius R around the collider (±1.5m thick at ~30km from a 4 TeV Collider)

v-Radiation from a μ^+ - μ^- Collider

- Model assumes target stays within band within material
 - Iying in bed in a basement room
 - inside a basement swimming pool
- Could spread out by adding vertical oscillation

- > Downstream intensity enhanced by $\frac{L\gamma}{C}$
- > small number of straights
 - most point very far away, or outside habitation zones
 - IR straight beams have large divergence
- > a few close emergences
 - 0.5m radius beam at 30k
 - Buy locations; insert neutrino detectors
 - multi-TeV neutrino beams
 - great beam monitors need 2
- For LHC muon Collider, a feature !!
 - not a bug

- CERN standard is ~1 mSv/year
 - (approved for LHC)
- Fermilab standard is 0.1mSv/yr
 - 1/10 DOE limit
- > High-Luminosity LHC muon collider is ~0.3 mSv/year
 - 10²⁰ μ/year/beam
- Can be reduced by orbit modulation
 - ~1/10

2020

- Is a significant consideration
 - Iimits luminosity, and energy

- Scenario has very interesting features
 - and problems
 - and solutions ?
- > Requires
 - positron source
 - 45 GeV positron ring
 - 22 GeV muon accumulator rings
 - ~cw acceleration
 - collider ring
- > no cooling
 - Liouville's theorem

e⁺ (45 GeV) +e⁻ (rest)→μ⁺ + μ⁻

• small ϵ_t : 1mrad *0.2*10⁻⁶ m

large ε_L: 2 GeV*0.003m

45 GeV positron ring on Be target

- > A Problem is Be Target (3mm)
 - e⁻ + nuclei

HEPAP

2020

- Lifetime is < 50 turns
 - 3 10^{16} 45 GeV e⁺/s (200MW)

160

170

180

190

210

220

230

240

positron and muon beams must match

HEPAP

- ≻ ε_{⊥,geo,μ}→ 0.2·10⁻⁹ _m
 - IF $\varepsilon_{\perp,\text{geo},e} = 0$ (and $\sigma_{e+}=0$)
 - but $\varepsilon_{x,geo,e} = ~6 ~10^{-9} m +$
- > In IPAC 17 (Boscolo et al.)
 - σ_e+ = ~0.1 –0.3 mm at target
 - should be < 1μm
- > To avoid large ε_{μ} , need:

•
$$\varepsilon_{x,geo,e+} < 10^{-9} \text{ m}$$

β_⊥< ~0.003m

HEPAP 2020 Another Problem – high energy stacking

- > Produce bunches every 500 μ s
 - accelerate into 7 TeV ring with RLA/FFAG; collide

Bunch combination at high energy?

> The actual number of μ /bunch in the muon collider can be larger by a factor ~ τ_{μ}^{lab} (HE)/500 μ s (~100 @6 TeV) by topping up.

Antonelli, ICHEP2016

- "topping up" works in electron rings because of radiation damping
- Does not work in muon rings because of Liouville's theorem
- can have multiple bunches in collider ring (but not combined)
- stacking in longitudinal phase space is limited
 - 1 bunch = ~ MAP goal longitudinal emittance
- stacking in transverse phase space reduces luminosity

- For multi turn accumulation (at ~ 2 kHz)
 - $\varepsilon_{t,N} = 4.10^{-8} \text{ m}, \ \varepsilon_L = -3 \text{ mm} \cdot 2 \text{GeV}/0.1 \rightarrow -0.06 \text{ m}$
- ≻ C =60m →2290 turns
- If accumulating muons are recirculated through target, can multiturn inject without increasing ε
 - But
 - needs matched lattice at target (β^{*}= 3mm ?),
 - momentum acceptance 10% isochronous /matched rf
 - Closest example is 62.5 GeV Higgs collider lattice
 - Y. Alekhin et al.
 - 300m, β^* = 3cm, $\epsilon_{t,N}$ = 2·10⁻⁴ m, $\delta < 0.1\%$

But ... Liouville ...

춖

> 2000 turn multiple scattering is not small

• even with β_{\perp} = 3mm, ϵ_{N} =4 \cdot 10⁻⁸ m

$$\frac{d\varepsilon_{N}}{dN_{turn}} = +\frac{\beta_{\perp}}{2} \frac{E_{s}^{2} \,\delta z}{\beta^{3} \gamma L_{R} \left(m_{\mu} c^{2}\right)^{2}} = \sim 10^{-9}$$

• $\epsilon_N \rightarrow 2 \cdot 10^{-6}$??

- dE/turn ~ 1.5 MeV \rightarrow 2 GeV total
 - need rf for reacceleration

Solution

- Use Third Law of Beam physics
 - does not fit in the margins of this talk

> ~14 TeV $\mu^+ \mu^-$ Collider in LHC tunnel is possible

> Can use proton driver from PS or new Linac

- high luminosity requires muon cooling
 - more cooling is better...
- or novel low-emittance source
- neutrino radiation is a constraint
 - manageable ...
- > new muon source (45 GeV e⁺ + e⁻ $\rightarrow \mu^+ \mu^-$) poses interesting challenges
 - more beam physics study ...
 - use 3rd Law

Thank you for your attention

High Energy to 14 TeV at LHC

> CERN is interested in $\mu^+\mu^-$ site-filler

- fits in LHC tunnel
- 7 x 7 TeV 14 TeV Collider

Could consider for muon source:

- PS-based proton source + cooling
- MAP 8GeV 2MW p + cooling
- threshold 45 GeV e⁺ ring + e⁻ production
 - LEMC- Boscolo et al. –no cooling

Shiltsev & Neuffer, IPAC 18

		pos_Ring
Parameter	Units	e+
Energy	GeV	45
Circumference	m	6300
Bending radius	m	709.6
Magnetic rigidity	Τm	150
Lorentz factor		88062.62
Coupling (full current)	%	1
Emittance x (from model)	m	5.73E-09
Emittance y	m	5.73E-11
Bunch length (zero current)	mm	3.6
Beam current	mA	240
RF frequency	Hz	5.00E+08
RF voltage	GV	0.768
Revolution frequency	Hz	4.76E+04
Harmonic number	#	10508
Revolution period	s	2.10E-05
Number of bunches	#	100
N. Particle/bunch	#	3.15E+11
Syncronous phase	#	0.73
Syncrotron frequency	Hz	2415.31
Synchrotron tune	#	5.08E-02
synchrotron period	turns	19.70
Overvoltage		1.50
Transverse damping time	turns	175.00
Transverse damping time	S	0.0037
Longitudinal damping time	turns	87.50
Longitudinal damping time	s	1.84E-03
Energy Loss/turn	GeV	0.511
Momentum compaction		1.21E-04
B field	Т	0.211
Rf energy acceptance	%	3.98
Energy spread (SR)	dE/E	1.00E-03
SR power loss	GW	0.12
SR power/Circumference	kW/m	19.48

1. Beam Phase Space cannot decrease

Liouville's theorem cannot be violated

2. Beam Phase Space increases

bunch combination is inefficient

3. Break the 1st Law wherever possible

- **1**. radiation damping
- 2. stochastic cooling
- **3.** electron cooling
- 4. ionization cooling
- **5.** charge-exchange injection
- **6.** "stochastic injection" ($\pi \rightarrow \mu$ decay)
- 7. ??