upgrading FCC into a muon collider

Frank Zimmermann
ARIES APEC workshop on Muon Colliders
Padova, 2-3 July 2018

This work was supported, in part, by the European Commission under the HORIZON2020 Integrating Activity project ARIES, grant agreement 730871.
Future Circular Collider (FCC) Study

International FCC collaboration (CERN as host lab) to study:

- **pp-collider (FCC-hh)**
 - main emphasis, defining infrastructure requirements

- **~100 km tunnel infrastructure** in Geneva area, site specific
- **e^+e^- collider (FCC-ee)**, as potential first step
- **HE-LHC with FCC-hh technology**
- **p-e (FCC-he) option**, IP integration, e^- from ERL

- **$16 \, \text{T} \Rightarrow 100 \, \text{TeV} \, pp \, \text{in} \, 100 \, \text{km}**
FCC-ee injector layout

- SLC/SuperKEKB-like 6 GeV linac accelerating 1 or 2 bunches with repetition rate of 100-200 Hz
- **same linac** used for positron production @ 4.46 GeV Positron beam emittances reduced in DR @ 1.54 GeV
- injection @ 6 GeV into of Pre-Booster Ring (SPS or new ring) and acceleration to 20 GeV
- injection to main Booster @ 20 GeV and **interleaved** filling of e+/e- (below 20 min for full filling) and continuous top-up

FCC-ee injector provides $\sim 3 \times 10^{12}$ e+/s
Motivations/approaches for FCC-based muon-collider study:

Novel three schemes for producing low-emittance muon beams:

1) **e^+e^- annihilation** above threshold using a *positron storage ring with a thin target* (LEMMA),
2) **laser/FEL-photon back-scattering off high-energy proton beams** circulating in the LHC or FCC-hh,
3) the **Gamma factory** concept where partially stripped heavy ions collide with a laser pulse to directly generate muons.

The Gamma factory would also deliver copious amounts of positrons, which could in turn be used as source for option (1).

On the other hand the top-up booster of the FCC-ee design would be an outstanding e^+ storage ring, at the right beam energy, around 45 GeV. After rapid acceleration the muons, produced in one of the three or four ways, could be collided in machines like the SPS, LHC or FCC-hh. Possible collider layouts are suggested.

Ref. IPAC’18 MOPMF065
threshold e\(^+\) energy for \(\mu\) production in e\(^+\) annihilation on static e\(^-\):
\[E_{e^+, \text{thr}} = \frac{4m_\mu^2 c^4 - 2m_e^2 c^4}{2m_e c^2} = 43.7 \text{ GeV} \]

→ we could use the FCC-ee e\(^+\) ring or the FCC-ee top-up booster as \(\mu\) accumulation & internal target ring!

e\(^+\) production rates achieved (SLC) or needed

<table>
<thead>
<tr>
<th></th>
<th>S-KEKB</th>
<th>SLC</th>
<th>CLIC (3 TeV)</th>
<th>ILC (H)</th>
<th>FCC-ee (Z)</th>
<th>Italian (\mu) collider</th>
</tr>
</thead>
<tbody>
<tr>
<td>(10^{12}) e(^+)/s</td>
<td>2.5</td>
<td>6</td>
<td>110</td>
<td>200</td>
<td>3</td>
<td>10000</td>
</tr>
</tbody>
</table>

\(x\) 18 \(x\) 33 \(x\) 1/2 \(x\) 1650

LHC based Gamma Factory could provide 100x more e\(^+\)/s than needed!
staged approach: FCC-ee \rightarrow FCC-hh \rightarrow FCC-$\mu\mu$?

<table>
<thead>
<tr>
<th>scheme</th>
<th>$p-\gamma$</th>
<th>G-F μ</th>
<th>e^+ annih.</th>
<th>G-F e^+ & e^+ annih.</th>
</tr>
</thead>
<tbody>
<tr>
<td>base</td>
<td>LHC/FCC-hh</td>
<td>LHC/FCC-hh</td>
<td>FCC-ee</td>
<td>FCC-ee & FCC-ee</td>
</tr>
<tr>
<td>rate \dot{N}_μ [GHz]</td>
<td>1</td>
<td>400</td>
<td>0.003</td>
<td>100</td>
</tr>
<tr>
<td>μ per pulse</td>
<td>100</td>
<td>4×10^4</td>
<td>2×10^3</td>
<td>6×10^7</td>
</tr>
<tr>
<td>pulse spacing [ns]</td>
<td>100</td>
<td>100</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>energy [GeV]</td>
<td>2.5</td>
<td>0.1</td>
<td>22</td>
<td>22</td>
</tr>
<tr>
<td>rms energy spread</td>
<td>3%</td>
<td>10%</td>
<td>10%</td>
<td>10%</td>
</tr>
<tr>
<td>norm. emittance [μm]</td>
<td>7</td>
<td>2000</td>
<td>0.04</td>
<td>0.04</td>
</tr>
<tr>
<td>$\dot{N}_\mu/\varepsilon_N$ [10^{15} m$^{-1}$s$^{-1}$]</td>
<td>0.1</td>
<td>0.2</td>
<td>0.1</td>
<td>$\boxed{3,000}$</td>
</tr>
</tbody>
</table>

\rightarrow The **Gamma Factory** offers the best performance for muon production, especially if not used for generating muons directly, but for producing positrons in combination with the positron annihilation scheme (profiting from the small emittance available in this scenario).
recirculation for stacking or acceleration

muon lifetime in #turns with recirculation for stacking or acceleration:

1. constant magnetic field \(B \)

\[
\frac{\tau}{T_{rev}} = \frac{eB\tau_0 F_{dip}}{2\pi m_\mu}
\]

2. constant bending radius \(\rho \)

\[
\frac{\tau}{T_{rev}} = \frac{E \tau_0 F_{dip}}{\rho 2\pi m_\mu c}
\]
bunch spacing Δt_μ together with magnetic field B determine stacking-ring beam energy as

$$E = \frac{\Delta t_\mu c^2 B e F_{dip}}{2\pi}$$

At $B=16$ T:
$\Delta t_\mu = 15$ ns \rightarrow 2.4 GeV ,
$\Delta t_\mu = 100$ ns \rightarrow 16 GeV ;
ring circumference = 4.5 m or 30 m, respectively.
acceleration by pulsed synchrotron

minimum ring rf voltage

\[V_{rf} > \frac{m_\mu c^2 C}{eC\tau_0 \ln(E/E_0)} \]

minimum rf voltage as a function of final beam energy, for three different injection energies, at \(C = 100 \text{ km} \)
luminosity

\[L \approx f_{\text{rev}} \dot{N}_\mu \frac{\dot{N}_\mu}{\varepsilon_N} \frac{1}{3^6} \gamma \tau^2 \frac{1}{4\pi \beta^*} = \frac{1}{3^6} \left\{ \left(\frac{eF_{\text{dip}}}{2\pi m_\mu} \right)^3 \frac{\tau_0^2}{4\pi c^2} \right\} \left[B^3 C^2 \right] \left[\frac{\dot{N}_\mu}{\varepsilon_N} \right] \frac{1}{\beta^*} \]

100 TeV \(\mu \) collider in \(C=100 \) km FCC tunnel with \(B=16 \) T
14 TeV μ collider LHC-$\mu\mu$ with FCC-ee μ^\pm production

e^+ (45 GeV)

FCC-ee e^+ ring for μ production

μ production target

μ (\sim20 GeV)

$\mu^+\mu^-$ (7+7 TeV)

SPS-$\mu\mu$

(fast ramping from 20 to 450 GeV)

LHC-$\mu\mu$

(pulsed)
100 TeV μ collider FCC-$\mu\mu$ with FCC-hh PSI μ^\pm production

FCC-hh PSI ring for μ production

laser excitation

“gammas”

μ production target

SPS-$\mu\mu$
(fast ramping from 20 to 450 GeV)

μ (~20 MeV)

acceleration to ~20 GeV

LHC-$\mu\mu$
(pulsed)

FCC-$\mu\mu$

(50+50 TeV)
100 TeV μ collider FCC-$\mu\mu$ with FCC-hh PSI e^+ & FCC-ee μ^\pm production
Parameters of LHC/FCC based muon colliders
- using γ factory concept and optionally also LEMMA scheme

<table>
<thead>
<tr>
<th></th>
<th>LHC based, using γ factory e⁺ & LEMMA</th>
<th>FCC based, using γ factory muons</th>
<th>FCC based, using γ factory e⁺ & LEMMA</th>
</tr>
</thead>
<tbody>
<tr>
<td>μ⁺μ⁻ c.m. energy [TeV]</td>
<td>27</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>#bunches / beam</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>average #μ / bunch [10⁹]</td>
<td>4</td>
<td>16</td>
<td>4</td>
</tr>
<tr>
<td>β* [mm]</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>norm. emittance γε [μm]</td>
<td>0.04 (0.2?)</td>
<td>2000</td>
<td>0.04 (0.2?)</td>
</tr>
<tr>
<td>av. luminosity [10³⁴ cm⁻²s⁻¹]</td>
<td>0.05 (0.01)</td>
<td>0.003</td>
<td>10 (2)</td>
</tr>
<tr>
<td>comment</td>
<td>LEMMA emittance ?</td>
<td>LEMMA emittance ?</td>
<td>LEMMA emittance ?</td>
</tr>
</tbody>
</table>
luminosity per wall-plug power vs c.m. energy

\[\frac{L_{\text{tot}}}{P_{\text{el}}} \left[10^{32}\text{cm}^{-2}\text{s}^{-1}/\text{MW} \right] \]

Conclusions

upgrade of existing and proposed facilities LEP(3)/LHC, FCC-hh/ee or CECP/SppC into a muon collider!

several key features of these facilities (e+ beam energy, positron flux, magnetic field, availability of intense beams of high-energy protons and partially-stripped heavy ions, etc.) exactly match requirements of future highest-energy muon collider complex

μ collider: long-term strategy for particle physics

FCC-based μ collider: optimum luminosity, best/multiple use of infrastructure
Thanks to Michael Benedikt, Alain Blondel, Manuela Boscolo, Massimo Ferrario, Massimo Giovannozzi, Witek Krasny, Patric Muggli, Pantaleo Raimondi, Vladimir Shiltsev and Marco Zanetti for helpful discussions.
References: