Muon Acceleration for Neutrino Factory and Beyond

Alex Bogacz

Operated by JSA for the U.S. Department of Energy

Overview

- Accelerator Topologies: 'Racetrack vs Dogbone'
- Muon Acceleration for 5 GeV Neutrino Factory
 - Linac + 'Dogbone' RLA: Beam Dynamics Issues
 - Full bucket acceleration, Longitudinal compression
 - Longitudinal RF frequency shift: Matching chicane to accommodate μ^{\pm}
 - Transverse Optics: Bi-sected linacs + 'Droplet' Arcs
- Extending accelerator complex to 63 GeV Higgs Factory
 - Dogbone RLA with FFAG-like Arcs
 - Proof-of-Concept Optics
 - Demonstration Experiment: JEMMRLA

Thomas Jefferson National Accelerator Facility

Operated by JSA for the U.S. Department of Energy

Jeffe

Lab

Accelerator Topologies

'Racetrack' vs 'Dogbone' RLA

- Twice the acceleration efficiency
- Better separation of passes
- Simultaneous acceleration of both charge species
- Linac traversed in both direction => bi-sected linac optics

Operated by JSA for the U.S. Department of Energy

Jefferson Lab

Linac and RLA to 5 GeV

Thomas Jefferson National Accelerator Facility

Operated by JSA for the U.S. Department of Energy

Initial 325 MHz Linac – Transverse Acceptance

Initial Linac – Longitudinal Matching

Initial Linac – Longitudinal Acceptance

RLA to 5 GeV

Thomas Jefferson National Accelerator Facility

Operated by JSA for the U.S. Department of Energy

325 MHz – 650 MHz Transition

Delay/Compression Chicane

5 free parameters needed to match: 2 betas + 2 alphas + disp.

Muon Collider Workshop, Padua, Italy, July 1 - 3, 2018

Program

Longitudinal Compression with M₅₆

Operated by JSA for the U.S. Department of Energy

Muon Collider Workshop, Padua, Italy, July 1 - 3, 2018

RLA to 5 GeV

Thomas Jefferson National Accelerator Facility

Operated by JSA for the U.S. Department of Energy

Bi-sected Linac Optics

'half pass', 1250-1625 MeV

1-pass, 1625-2475 MeV

initial phase adv/cell 90 deg. scaling quads with energy

4 meter 90 deg. FODO cells 25 MV/m, 650 MHz, 2 × 4-cell cavity

mirror symmetric quads in the linac

Operated by JSA for the U.S. Department of Energy

Muon Collider Workshop, Padua, Italy, July 1 - 3, 2018

Multi-pass Linac Optics

Jefferson Lab

Thomas Jefferson National Accelerator Facility

15 Program

Operated by JSA for the U.S. Department of Energy

Arc 1 and Arc 3

Operated by JSA for the U.S. Department of Energy

Muon Collider Workshop, Padua, Italy, July 1 - 3, 2018

Arc 1 and 3 – Optics

Operated by JSA for the U.S. Department of Energy

Muon Collider Workshop, Padua, Italy, July 1 - 3, 2018

Switchyard – Arc 1 and 3

Thomas Jefferson National Accelerator Facility

Operated by JSA for the U.S. Department of Energy

Future Muon Facilities – Muon Acceleration

Operated by JSA for the U.S. Department of Energy

Muon Collider Workshop, Padua, Italy, July 1 - 3, 2018

19

Program

Higgs Factory: 5-pass RLA 5-63 GeV

Thomas Jefferson National Accelerator Facility

Operated by JSA for the U.S. Department of Energy

Multi-pass Arc Muon RLA

Single- vs Multi- pass Droplet Arcs

Operated by JSA for the U.S. Department of Energy

Super-Cell Optics for $P_2/P_1 = 2$

Each arc is composed of symmetric super cells consisting of linear combined-function magnets (each bend: 2.5⁰)

Operated by JSA for the U.S. Department of Energy

Muon Collider Workshop, Padua, Italy, July 1 - 3, 2018

Summary

5 GeV Neutrino Factory based on multi-pass 'Dogbone' RLA

- Linac (255 MeV 1.25 GeV) Longitudinal Dynamics
- Delay/Compression Chicane Transition from 325 to 650 MHz SRF
- RLA Optics (1.25 5 GeV) 4 droplet Arcs and multi-pass linac
- **Optimized RLA scheme for Higgs Factory**
 - RLA with multi-pass arcs
 - Proof-of-Concept experiments: JEMMRLA and CBETA

Thomas Jefferson National Accelerator Facility

Thank you for your Attention!

Questions?

Thomas Jefferson National Accelerator Facility

Operated by JSA for the U.S. Department of Energy

Backup Slides

Thomas Jefferson National Accelerator Facility

Operated by JSA for the U.S. Department of Energy

0.4-1.5 GeV Linac – Transmission

27 rogram

Beam Loading

Thomas Jefferson National Accelerator Facility

Operated by JSA for the U.S. Department of Energy

Muon Collider Workshop, Padua, Italy, July 1 - 3, 2018

28

rooran

Multi-pass Linac – Bisected Optics

E = 5–63 GeV

Operated by JSA for the U.S. Department of Energy

Muon Collider Workshop, Padua, Italy, July 1 - 3, 2018

29

Program

Arc Optics – Longitudinal Distortion

E = 24 GeV

Operated by JSA for the U.S. Department of Energy

Muon Collider Workshop, Padua, Italy, July 1 - 3, 2018

30

Program

Two-pass Arc Layout

- Simple closing of arc geometry when using similar super cells
- 1.2 / 2.4 GeV/c arc design used as an illustration can be scaled/optimized for higher energies preserving the factor of 2 momentum ratio of the two passes

'Droplet' Arc – Spreader/Recombiner

First few magnets of the super cell have dipole field component only, serving as Spreader/Recombiner

Operated by JSA for the U.S. Department of Energy

Muon Collider Workshop, Padua, Italy, July 1 - 3, 2018

A pair of 2-pass Arcs – Switchyard

Lower momentum arc is the most challenging because of the highest momentum ratio; have a solution but still plenty of room for optimization

Thomas Jefferson National Accelerator Facility

Operated by JSA for the U.S. Department of Energy

Jefferson Lab

Vertical Bypass Concept

Operated by JSA for the U.S. Department of Energy

Muon Collider Workshop, Padua, Italy, July 1 - 3, 2018

'Pulsed' quad Dogbone RLA

- Quad pulse would assume 500 Hz cycle ramp with the top pole field of 1 Tesla.
- Equivalent to: maximum quad gradient of G_{max} =2 kGauss/cm (5 cm bore radius) ramped over $\tau = 10^{-3}$ sec from the initial gradient of G₀ =0.1 kGauss/cm (required by 90⁰ phase advance/cell FODO structure at 3 GeV) $G_8 = 13 G_0 = 1.3 \text{ kGauss/cm}$
- These parameters are based on similar applications for ramping corrector magnets such as the new ones for the Fermilab Booster Synchrotron that have 1 kHz capability

$$T \approx 8 \times \frac{500 + 250}{3 \times 10^{-8}} \sec = 2 \times 10^{-5} \sec$$
$$\frac{T}{\tau} \approx 2 \times 10^{-2}$$

Thomas Jefferson National Accelerator Facility

Operated by JSA for the U.S. Department of Energy

'Fixed' vs 'Pulsed' linac Optics (8-pass)

Operated by JSA for the U.S. Department of Energy

Muon Collider Workshop, Padua, Italy, July 1 - 3, 2018

36

rooran

'Fixed' vs 'Pulsed' linac Optics (12-pass)

Operated by JSA for the U.S. Department of Energy

Muon Collider Workshop, Padua, Italy, July 1 - 3, 2018