Muon production based on ions incident on an internal target

Chris Rogers, ISIS, Rutherford Appleton Laboratory

Overview

- Internal target technology can be used for muon production from protons
- May enable high rate pion and muon production with a relatively modest accelerator as source
- May enable high muon yield reducing the requirements on proton-driven muon collider cooling
- Design for muon production from internal target by Yoshi Mori et al
 - Y.Mori et al., "Intense Negative Muon Facility with MERIT ring for Nuclear Transmutation"; Proc, 14th Conf. On Muon Spin Rotation, Relaxation and Resonanc(µSR2017), JPS Conf. Proc. 21, 011063(2018). https://journals.jps.jp/doi/book/10.7566/musr2017
 - Intense Muon Source with Energy Recovery Internal Target (ERIT) Ring Using Deuterium Gas Target, Yoshiharu MORI, Hidefumi OKITA, Yoshihiro ISHI, Yujiro YONEMURA and Hidehiko ARIMA pp.1-9, Vol.77, No.1, September 28, 2017 http://kenkyo.eng.kyushu-u.ac.jp/memoirs-eng/top.php

Proton-based Muon Collider Pion Production

 "Standard" muon collider design takes protons onto a target in high field solenoid

Challenges

- Large secondary radiation yield
- Large momentum spread of pions/muons
- Managed in proton-based muon collider in a number of ways:
 - Local shielding near to target and significant radioactive material handling facility
 - Short proton bunch and phase rotation to control longitudinal phase space
 - Ionization cooling to control transverse phase space
 - High-acceptance solenoidal chicane and absorber to filter beam impurities
- Significant beam cooling to give the required luminosity

Energy Recovery Internal Target (ERIT)

- KURNS ERIT ring (Mori et al)
- Study of neutron production for cancer therapy

Mean Radius [m]	2.35
Number of Sectors	8
Max B Field [T]	0.9
Field Index	1.92
FD Ratio	3
Horizontal Tune	1.74
Vertical Tune	2.22
Horizontal Acceptance [microns]	7000
Vertical Acceptance [microns]	3000
RF Voltage [kV]	200
Harmonic Number	6
RF Frequency [MHz]	3.01

Energy Recovery Internal Target (ERIT)

- Excellent acceptance
- Beam survival ~ several 100 turns
- Limited in the end by vertical aperture
- Demonstrates that amplification using energy recovery is possible

Multiplex Energy Recovery Internal Target (MERIT)

- MERIT muon production concept (Yoshi Mori, KURNS)
- Extend vertical aperture
 - Splitting coils further
 - Modify pole-tip profile
 - Very large DA
- Accelerate to top energy and hold
 - Wedge shaped liquid Li target
 - Serpentine (fixed frequency) acceleration
- Yields very long beam lifetime

Muon Production

- Get between about 10⁻⁴ and 10⁻³ pions per proton per MeV deposited on target
 - Baseline has 2 MeV/proton per pass (100 ns)
 - Baseline has approx 10¹² protons stored

Combining into a Muon Collider

Scheme as follows

Considerations

- Near IR MERIT ring must be remote handled
 - But existing MC design \rightarrow high field solenoid near IR
- Buncher and cooling channel must be CW
 - Can't accumulate near capture due to short muon lifetime
 - Can take advantage of longitudinal cooling
- In collider ring muons have 2 ms lifetime
 - 4x10⁸ muons per pass
 - 4x10¹³ in 1 ms lifetime @ 100 GeV
 - Can run with 1 kHz rep rate
- Operating proton ring at higher energy has advantages
 - More primary protons (weaker space charge limit)
 - More secondary pions per proton
 - Can get to even higher rates

