Latest Higgs physics results from the ATLAS experiment

Chen Zhou (University of Wisconsin) on behalf of the ATLAS Collaboration

CERN Seminar June 26, 2018

Higgs Physics @ ATLAS

- The Higgs boson was discovered by ATLAS and CMS in 2012
 - a major step for understanding the electroweak symmetry breaking
- Since then, many **Higgs property studies** (spin, parity, mass, couplings, cross sections, etc.) have been performed
 - no deviation from the Standard Model (SM) prediction was found
- Today: Higgs physics results with up to 80 fb⁻¹ of 13 TeV data
 - (selection from a larger set of new results)

Yukawa couplings

- In Standard Model, Higgs boson couple to fermions (quarks and leptons) through Yukawa interactions
 - giving masses to quarks and leptons
- Yukawa interactions are "a new kind of fundamental interaction" -Gavin Salam at LHCP theory summary talk
 - important to study the Yukawa sector
- Experimental signatures: tt̃H production (today), H→ττ
 decay (today), etc.
 - Yukawa couplings are proportional to fermion masses

Data taking

- 13 TeV proton-proton collision data recorded by ATLAS and after data quality requirement
 - 2015-2016: 36 fb⁻¹, 2017: 44 fb⁻¹
 - Thank CERN for the successful LHC operation!

Pileup

- Mean number of interactions per crossing (pileup):
 - <2015-2016>: ~24, <2017>: ~38
 - high pileup could be challenging for physics results

Performance vs pileup

- Robust performance against high pileup
 - great effort in detector operation and particle reconstruction

Contents of this talk

- Part 1: ttH observation
 - $t\bar{t}H (H \rightarrow \gamma \gamma)$
 - $t\bar{t}H (H \rightarrow ZZ^* \rightarrow 4\text{-lepton})$
 - ttH combination
- Part 2: $H \rightarrow \tau \tau$ cross section measurements
- Part 3: $H \rightarrow ZZ^* \rightarrow 4$ -lepton property measurements

Part 1: tfH observation

Higgs-top Yukawa coupling

- A probe of fundamental interest: the Yukawa coupling between the Higgs boson and the top quark, the heaviest particle in SM
- Higgs-top Yukawa coupling can be **indirectly probed** via the gluon-fusion production cross section and $H \rightarrow \gamma \gamma$ decay branch ratio (loop-level processes)
 - BSM particles could be present in the loop

t**T**H production mode

- A more direct test of this coupling can be performed through the production of the Higgs boson in association with a top quark pair (ttH)
- A very rare Higgs production mode (~1%); tree-level process
- Could get handles on BSM physics by comparison between loop-induced processes and direct tt production

Study ttH production

- Need to consider different Higgs boson decay channels for such a rare production mode!
 - $t\bar{t}H, H \rightarrow ZZ^* \rightarrow 4$ -lepton
 - $t\bar{t}H$, $H \rightarrow \gamma\gamma$
 - tTH, multi-lepton (H \rightarrow WW*, $\tau\tau$, ZZ*, excluding ZZ* \rightarrow 4-lepton)
 - tītH, H→bb

larger S/B

Study tTH production

- Previous ATLAS tt
 Therewise a standard deviations
 Previous ATLAS tt
 Therewise a standard deviation standard deviation standard deviations
 Previous ATLAS tt
 Therewise a standard deviation standard deviati
 - <u>CERN seminar by Ximo Poveda</u> (with a focus on tt
 (multi-lepton) and tt
 (H→bb
))

- Latest CMS ttering the results: combining data at 7, 8, and 13 TeV, observed (expected) significance of **5.2 (4.2)** standard deviations (PRL 120, 231801)
 - ♦ JHEP 11 (2017) 047 (ttH, H→ZZ*→4-lepton)
 - ◆ arxiv: 1804.02716 (ttH, H→γγ)
 - arxiv: 1803.05485 (ttH, multi-lepton)
 - ★ arxiv: 1803.06986, arxiv: 1804.03682 (ttH, H→bb)
- Now: ATLAS tt
 (H→γγ) and tt
 (H→ZZ*→4-lepton)

 results are updated with 80 fb⁻¹ of 13 TeV data, and included in tt
 (Arxiv: 1806.00425)

 $t\bar{t}H (H \rightarrow \gamma\gamma) (80 \ fb^{-1})$

arxiv: 1806.00425; June 2018

tt ($H \rightarrow \gamma \gamma$) analysis strategy

- Select events with **two photons** and at least one b-jet \rightarrow Separate to hadronic channel (n_{lep} = 0) and leptonic channel (n_{lep} >= 1)
 - Background: continuum bkg. (γγ, ttγγ, etc.) and resonant bkg. from other Higgs production modes (ggH, tH, etc.)
- →In each channel, train a Boost Decision Tree (BDT) with XGBoost package
 - define categories based on BDT output
- →Fit diphoton mass over 7 categories
 - robust continuum background estimation from data sidebands; narrow signal peaks around Higgs boson mass
- →Measure ttel production cross section, etc.

Hadronic channel

- Target: all-hadronic topquark pair decays, or semi-leptonic top-quark pair decays with leptons not identified
- BDT trained with ttH simulation and data control region, using:
 - pT, η, φ, and b-tag status of first 6 jets (sorted by pT)
 - MET and \$\u03c6(MET)\$
 - pT/mγγ, η, and φ of 2 photons

tītH (H→γγ)

 Define 4 categories in hadronic channel based on BDT output, to exploit its good separation power

Leptonic channel

t**τ**H (H→γγ)

- Target: semi-leptonic top-quark pair decays
- BDT trained with ttH simulation and data control region, using:
 - pT, η, φ of first 4 jets,
 first 2 leptons (sorted by pT)
 - MET and φ(MET)
 - pT/mγγ, η, and φ of 2 photons

 Define 3 categories in leptonic channel based on BDT output, to exploit its good separation power

Signal and background modeling $t\bar{t}H (H \rightarrow \gamma \gamma)$

- Model of ttH signal and non-ttH Higgs background
 - Yields from non-tt
 H production modes estimated from simulation
 - assign 100% uncertainties on ggF, VBF and VH separately, due to current understanding of heavy-flavor production
 - Mass shapes: parametrized from simulation with doublesided crystal ball functions in each category
- Model of continuum background:
 - Analytical functions fitted on (unbinned) data
 - From dedicated background-only samples
 - checked the BDTs do not induce a bump
 - studied functional forms and associated uncertainties

Diphoton mass: all categories

- Diphoton mass spectrum peaks at the Higgs mass around 125 GeV
- 36 $^{+12}_{-11}$ ttH (H $\rightarrow\gamma\gamma$) events fitted over 7 categories
 - ~90 tt
 H→qq) events are expected to be produced at ATLAS during 2015-2017

 $t\bar{t}H (H \rightarrow \gamma \gamma)$

Event yields: all categories tte (H→γγ)

Number of events in each category, in the mass window containing 90% of the signal events

tterm (H $\rightarrow \gamma \gamma$) results: significance tterm (H $\rightarrow \gamma \gamma$)

tīH, H→γγ: 80 fb⁻¹	expected significance	observed significance
Had categories	2.7σ	3.8σ
Lep categories	2.5σ	1.9σ
Had+Lep categories	3.7σ	4.1σ

- The new tten ($H \rightarrow \gamma \gamma$) analysis is **50% more sensitive** than the previous publication (arxiv:1802.04146), for the same luminosity
- The largest sensitivity improvement (about 30%) is achieved by using object-level information of jets, leptons, photons and MET as inputs to BDT

Some variables in BDT training $t\bar{t}H (H \rightarrow \gamma\gamma)$

- Signal and background differ in object-level variables
- Cannot be shown in such figures: correlation between training variables

Some variables not in BDT training $t\bar{t}H (H \rightarrow \gamma \gamma)$

(based on top reconstruction)

- The distributions of data in best BDT categories follow the distributions of ttermulation
- These variables are for validation and not directly used in analysis

Display: ttH ($H \rightarrow \gamma \gamma$) Had1 candidate event

tīH (H→γγ) Had1 candidate, with m_{γγ} = 125.4 GeV and six jets;
 S/B (Had1) ~ 2

Chen Zhou (Wisconsin)

$t\bar{t}H (H \rightarrow ZZ^* \rightarrow 4\text{-lepton})$ (80 fb⁻¹)

arxiv: 1806.00425; June 2018

- Select events with four leptons forming two same-flavor opposite-charge lepton pairs, and at least one b-jet
- Background: ttW, ttZ, and other Higgs production modes
- Hadronic region (no additional lepton):
 - targeting hadronic top-quark pair decay
 - train a BDT, further separate events into 2 BDT regions
- Leptonic region (at least one additional lepton):
 - targeting semi-leptonic top-quark pair decay

Results

- Use event yields of the above regions as discriminant
 - expect ~0.6 signal events over small background, observe 0 event
- The observed (expected) signal significance is 0σ (1.2σ) in ttH (H→ZZ*→4-lepton) analysis

ttH combination and results

arxiv: 1806.00425; June 2018

- **Combine four 13 TeV ttH analyses**
 - γγ (80 fb⁻¹): arxiv: 1806.00425, **NEW**
 - 4-lepton (80 fb⁻¹): arxiv: 1806.00425, **NEW**
 - multi-lepton (36 fb⁻¹): PRD 97 (2018) 072003
 - bb (36 fb⁻¹): PRD 97 (2018) 072016
- The relevant systematic uncertainties are correlated between the analyses
- Non-tt
 H production cross sections are fixed to the SM predictions
- Also combine the 13 TeV analyses with the 7 TeV and 8 TeV analyses

t**t**H significance

Analysis	Integrated	Expected	Observed
	luminosity [fb ⁻¹]	significance	significance
$H \rightarrow \gamma \gamma$	79.8	3.7σ	4.1σ
$H \rightarrow$ multilepton	36.1	2.8σ	4.1σ
$H \rightarrow b\bar{b}$	36.1	1.6σ	1.4σ
$H \to Z Z^* \to 4\ell$	79.8	1.2σ	0σ
Combined (13 TeV)	36.1-79.8	4.9σ	5.8σ
Combined (7, 8, 13 TeV)	4.5, 20.3, 36.1–79.8	5.1σ	6.3σ

- The observed (expected) signal significance is 5.8σ (4.9σ) in the Run 2 ttH combination
- The observed (expected) signal significance is 6.3σ (5.1σ) in the Run 1 + Run 2 ttH combination
- Observation of ttH production at ATLAS!

Event yields in 13 TeV tTH analysis regions tTH combination

- Analysis regions are grouped by log₁₀(S/B)
- A tt
 H signal-like excess is visible for high log₁₀(S/B)
- Background-only model is not favored by data

Uncertainties

t**t**H combination

Uncertainty source	$\Delta \sigma_{t\bar{t}H} / \sigma_{t\bar{t}H}$ [%]
Theory uncertainties (modelling)	11.9
$t\bar{t}$ + heavy flavour	9.9
tTH	6.0
Non- $t\bar{t}H$ Higgs boson production modes	1.5
Other background processes	2.2
Experimental uncertainties (excl. template statistics)	9.3
Fake leptons	5.2
Jets, $E_{\rm T}^{\rm miss}$	4.9
Electrons, photons	3.2
Luminosity	3.0
au-lepton	2.5
Flavour tagging	1.8
MC statistical uncertainties	4.4

- The dominant systematics are tt
 H, tt
 +heavy flavor, and fake lepton modeling
- The impacts from systematic uncertainties and statistical uncertainties are about the same

Chen Zhou (Wisconsin)

13 TeV tTH cross section measurement tTH combination

- The ttH production cross section at 13 TeV is measured to be 670 ± 90 (stat.) ⁺¹¹⁰-100 (syst.) fb
 - ~20% total uncertainty (yy, 4-lepton, and several multi-lepton channels are still strongly statistical limited)
- The SM prediction is 507 ⁺³⁵-50 fb

tTH cross section measurement: 8 TeV & 13 TeV tTH combination

 The measured ttH cross sections are so far in agreement with the SM model prediction

Part 2: $H \rightarrow \tau \tau$ cross section measurements (36 fb⁻¹)

ATLAS-CONF-2018-021, June 2018

- The first observation of the H→ττ decay mode with 5.5σ was achieved from a combination of ATLAS and CMS Run 1 results
- A recent H→ττ measurement by CMS reached 4.9σ using 35.9 fb⁻¹ of Run 2 data and 5.9σ after combination with Run 1 data
- $H \rightarrow \tau \tau$ is currently the only accessible leptonic decay mode of the Higgs boson
 - could provide sensitivity to CP violation in the Higgsfermion interactions

$H \rightarrow \tau \tau$ Analysis @ ATLAS

- Use 36.1 fb⁻¹ of 13 TeV proton-proton collision data collected by ATLAS
 - **3 analysis channels** to consider all combinations of the leptonic and hadronic tau decays:
 - $\tau_{lep}\tau_{lep}$ (~12%): N(lepton) = 2, N(hadronic tau) = 0
 - $\tau_{\text{lep}}\tau_{\text{had}}$ (~46%): N(lepton) = 1, N(hadronic tau) = 1
 - $\tau_{had}\tau_{had}$ (~42%): N(lepton) = 0, N(hadronic tau) = 2
- Major background:
 - Z→ττ production (discriminant shape estimated form simulation while normalization is determined from data sidebands)
 - misidentified hadronic tau (estimated using datadriven methods)

٠

others

14% **had**ronic

mode

65%

39%

 $1\pi^{\pm}1\pi^{0}\nu$

leptonic

mode

 $3\pi^{\pm}1\pi^{0}\nu$

 $1\pi^{\pm}2\pi^{0}\nu$

- In each channel, define "VBF" signal regions/ control regions (with at least 2 jets) to target VBF production mode of Higgs boson
- Reconstructed di-tau masses (m_{ττ}^{MMC}) distributions in different VBF signal regions:

Chen Zhou (Wisconsin)

- **CERN Seminar**
- r 6/26/18

 $H \rightarrow \tau \tau$

W/Z

W/Z

Boosted regions

- In each channel, define "boosted" signal regions/control regions (orthogonal to VBF regions, $p_T^{\tau\tau} > 100$ GeV) to target ggF production mode of Higgs boson
- Reconstructed di-tau masses ($m_{\tau\tau}^{MMC}$) distributions in different boosted signal regions:

 g ∞

, 000000

t/b

$Z \rightarrow \tau \tau$ background validation

 $\mathbf{H} {\rightarrow} \tau \tau$

- Validation regions based on $Z \rightarrow II$ events are studied to verify the $Z \rightarrow \tau \tau$ simulation
 - not included in the final fit
- Generally the simulation models well the $Z \rightarrow \tau \tau$ background in various topologies

- Perform simultaneous fits using reconstructed di-tau masses ($m_{\tau\tau}^{MMC}$) in 13 signal regions and event yields in 6 control regions from 3 analysis channels
 - normalization of $Z \rightarrow \tau \tau$ is floated in the fits
 - minor background ($Z \rightarrow II$ and top) are constrained by dedicated control regions
- The observed (expected) $H \rightarrow \tau \tau$ significance is 4.4 σ (4.1 σ) in 13 TeV results
- The observed (expected) $H \rightarrow \tau \tau$ significance is 6.4 σ (5.4 σ) combining 7, 8, and 13 TeV results

Results: uncertainties

Source of uncertainty	Impact $\Delta \sigma / \sigma_{H \to \tau \tau}$ (%)	
	Observed	Expected
Theoretical uncert. on signal	+13.5 / -8.7	+11.9 / -7.7
Background statistics	+11 / -10	+10.2 / -9.8
Jets and $E_{\rm T}^{\rm miss}$	+11.5 / -9.3	+10.5 / -8.6
Background normalization	+6.8/ -4.8	+6.6 / -4.6
Misidentified τ	+4.5/ -4.2	+3.7/ -3.4
Theoretical uncert. on background	+4.6/ -3.6	+5.1/ -4.2
Hadronic taus	+4.7/ -3.0	+5.8/-4.2
Flavour tagging	+3.3/ -2.4	+2.9/ -2.2
Luminosity	+3.3/ -2.3	+3.1/ -2.2
Electrons and muons	+1.2/ -1.0	+1.1/ -0.9
Total systematic uncert.	+24 / -20	+22 / -19
Data statistics	± 16	± 15
Total	+28 / -26	+27 $/-25$

- ~27% total uncertainty
 - dominated by systematic uncertainties (signal theoretical uncertainties, MC stats. for backgrounds, and Jet/MET uncertainties)

Results: cross sections

- The measured $H \rightarrow \tau \tau$ production cross section at 13 TeV is 3.71 $^{+0.60}$ -0.59 (stat.) $^{+0.87}$ -0.74 (syst.) pb
- The SM prediction is 3.43 ± 0.18 pb

Results: cross sections

- Also measure ggF and VBF production cross sections simultaneously:
 - $\sigma(VBF, H \rightarrow \tau \tau) = 0.28 \pm 0.09 \text{ (stat.)}^{+0.11} -0.09 \text{ (syst.) pb}$
 - $\sigma(ggF, H \rightarrow \tau \tau) = 3.0 \pm 1.0 \text{ (stat.)}^{+1.6}$ -1.2 (syst.) pb
- All measurements are in agreement with the SM prediction

Part 3: $H \rightarrow ZZ^* \rightarrow 4$ -lepton property measurements (80 fb⁻¹)

ATLAS-CONF-2018-018, June 2018

- "Golden" Higgs decay channel with high S/B ratio
- Use 80 fb⁻¹ of 13 TeV proton-proton collision data collected by ATLAS
- Select $H \rightarrow ZZ^* \rightarrow 4I$ candidates (next page)
- Measure Higgs properties with granularity:
 - fiducial and differential cross sections
 - production mode and simplified template cross sections

$H \rightarrow ZZ^* \rightarrow 4I$ candidate selection

- Select events with four leptons forming two same-flavor oppositecharge lepton pairs:
 - leading lepton pair: closest to Z mass
 - four channels: 4e,
 2e2μ, 2μ2e, 4μ
- 115 GeV < m₄₁ < 130 GeV for statistical analysis (195 events observed)
- Major background: irreducible ZZ* production (modeled by simulation)

Fiducial and differential measurements $H \rightarrow ZZ^* \rightarrow 4I$

- Define fiducial phase space to closely match analysis selection
- To extract signal event yield in each decay channel or each differential bin, m₄₁ distribution is fitted
- Obtain cross sections using correction factors from simulation (and bin-by-bin unfolding)

Fiducial cross sections

- Fiducial cross section are measured inclusively and separately for decay channels
- Also extrapolate for total cross section

H→ZZ*→4I

Differential cross sections

- Differential cross sections are presented for
 - pT_{4L}: test QCD calculations and sensitive to BSM physics
 - N_{jets}: sensitive to modeling of gluon emission, fractions of different production modes and BSM physics

 $H \rightarrow ZZ^* \rightarrow 4I$

Production mode measurements H->ZZ*->4

- Simplified template cross sections: separate production modes into kinematic regions
- Reconstructed events are categorized to 11 categories to target different production modes and kinematic regions

Chen Zhou (Wisconsin)

CERN Seminar

Production mode measurements

- In some categories, BDT are introduced to boost the sensitivity
- Event yields of BDT bins/categories are fitted to extract cross sections

H→ZZ*→4I

Production mode cross sections

- Reported 4 production mode cross sections: ggF, VBF, VH, ttH
- Still dominated by statistical uncertainties

Chen Zhou (Wisconsin)

H→ZZ*→4I

Simplified template cross sections H->ZZ*->4

- Report simplified template cross sections (kinematic regions separated from production modes)
- All measurements are in agreement with SM

Chen Zhou (Wisconsin)

Display: VH-Lep ($H \rightarrow ZZ^* \rightarrow 4$ -lepton) candidate event

4µ VH-Lep candidate, with m₄₁ = 124.6 GeV, extra electron of pT = 79 GeV and MET = 49 GeV; S(VH)/B ~ 2 where B is dominated by other Higgs production modes

Chen Zhou (Wisconsin)

Summary

- The ATLAS experiment reported on new Higgs physics results with up to 80 fb⁻¹, including data from 2017
- The results include the **observation** of the **t**tH production process (observed/expected $6.3\sigma/5.1\sigma$) and the $H \rightarrow \tau \tau$ decay mode (observed/expected $6.4\sigma/5.4\sigma$) of the 125 GeV Higgs boson
 - These constitute an observation by the ATLAS experiment of Yukawa interactions in both quark and lepton sectors, consistent with SM
- Higgs property measurements in $H \rightarrow ZZ^* \rightarrow 4I$ with 80 fb⁻¹ are in agreement with the SM predictions