

Triforce

Junze April 6, 2018

Overview

- Plots of Signal Background Accuracy
- Outputs from GoogLeNet for Pi0 vs. Gamma
 - 94% test accuracy (Triforce+BatchNorm)
 - Using Batch-Normalization as pre-normalization process
 - Used to be 99% (Feature-Scaling: [0, 1])
- Add Feature-Scaling in triforce.py and analyzer.py
 - 95.95% training accuracy (Triforce)
 - 95.82% test accuracy (Triforce)
 - Not sure why different accuracy

Database

- Source: /data/LCD/V3/
- Particle: ECAL images of Neutral Pion and Photon
- Size: 20 x 10,000 = 200,000

Numerical Results

	NIPS_DNN	Batch-Norm GoogLeNet
Training Epochs	10	10
Accuracy	86.85%	93.99%
AUC	0.89	0.97
Signal Accuracy	87.02%	96.23%
Backgroud Accuracy	87.23%	93.51%

Accuracy vs. Batches

Accuracy vs. Epoch

Loss vs. Batches

Loss vs. Epoch

ROC Curve

Signal Background Accuracy vs. Batch

Signal Background Accuracy vs. Epoch

Overview

- Plots of Signal Background Accuracy
- Outputs from GoogLeNet for Pi0 vs. Gamma
 - 94% test accuracy (Triforce+BatchNorm)
 - Using Batch-Normalization as pre-normalization process
 - Used to be 99% (Feature-Scaling: [0, 1])

Add Feature-Scaling in triforce.py and analyzer.py

- 94.90% best training accuracy (Triforce)
- 94.55% best test accuracy (Triforce)
- Not sure why different accuracy

Accuracy vs. Batches

Accuracy vs. Epoch

Loss vs. Batches

Loss vs. Epoch

Future Work

- Generating results of NIPS_DNN with different size of window
 - Based on Random-Angle new samples
- Looking into feature-scaling GoogLeNet code