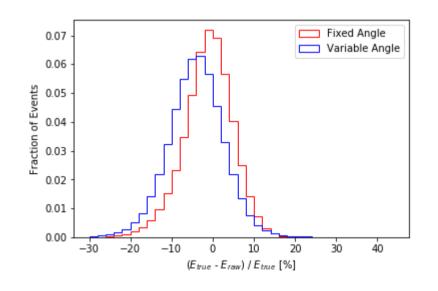


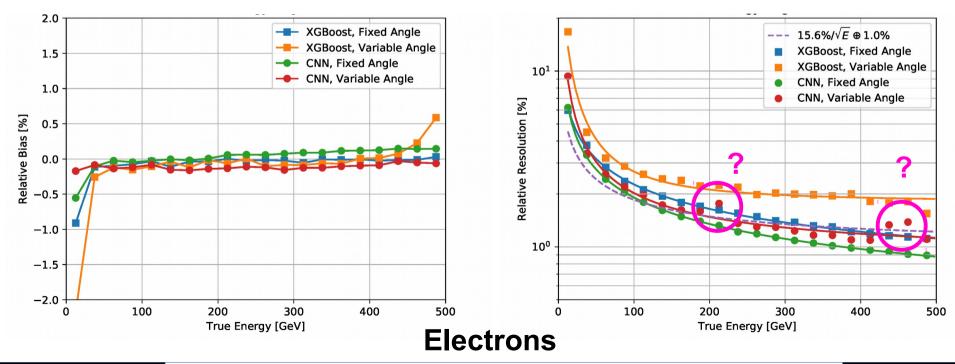
Regression: Variable Angle Electrons


Dominick Olivito (UCSD)

June 1, 2018

Overview

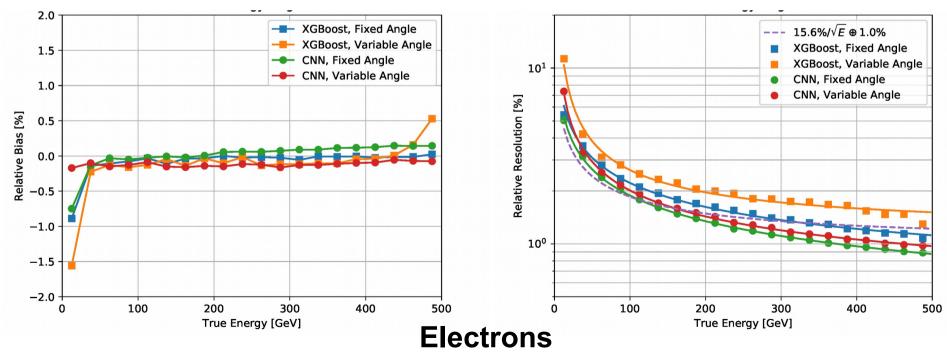
- Trying to understand why Variable Angle electron performance is worse than Fixed Angle
- See already that raw (ECAL+HCAL)/True response is different for variable angle vs fixed, so may expect differences at some level



Electrons

Previous Results

- Substantial difference in performance between Fixed and Variable angle samples, especially with XGBoost
- Less difference with CNN, but suspicious outliers in resolution vs energy plot
 - Using RMS \rightarrow sensitive to large outliers in (True-Pred)/True
 - Outliers come mainly from events with small fraction of true energy in window, or most of energy in HCAL(?)



D. Olivito (UCSD)

LCD ML Meeting

After Outlier Removal

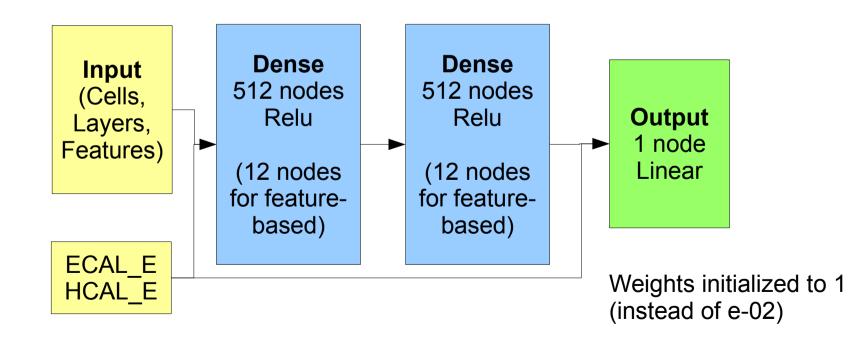
- In each bin, remove events that are more than 5 sigma (RMS) away from mean (True-Pred)/True
- Removes a handful of events / bin, < 0.1% overall
 - Could remove based on (ECAL+HCAL)/True, didn't have ready
 - Doesn't affect Fixed Angle sample
- Variable angle performance improves, much closer to fixed angle now → especially for CNN

D. Olivito (UCSD)

LCD ML Meeting

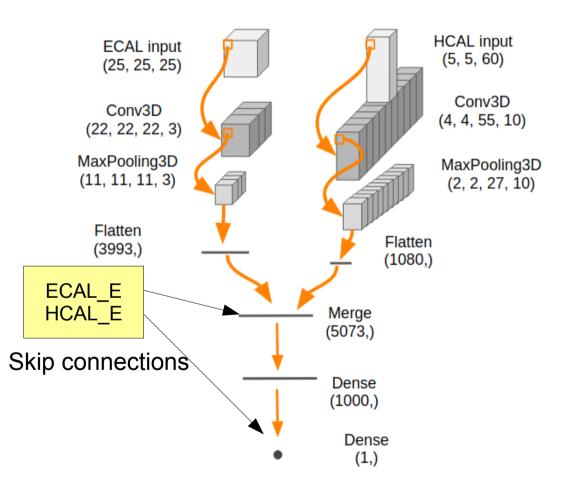
Summary / To Do

- Some of the bad Variable Angle Electron performance was coming from events with either:
 - Very small fraction of true energy reconstructed in window, or
 - Large fraction of reco energy in HCAL (instead of 0-5%)
- Doesn't really occur in Fixed Angle sample, not sure what the difference is
- To do:
 - Check resolution vs eta
 - Check other particles


Bonus Slides

Samples / Details

- Samples: new larger window samples, fixed angle, with features
 - On culture-plate at caltech:
 - /data/shared/LCDLargeWindow/fixedangle/*Escan/*.h5
 - /data/shared/LCDLargeWindow/varangle/*Escan/*.h5
 - Slimmed versions with only features (no images):
 - /data/shared/LCDLargeWindow/fixedangle/*Escan/merged_featuresonly/
 - /data/shared/LCDLargeWindow/varangle/*Escan/merged_featuresonly/
 - ~800k events, 70% train, 30% test
- Running XGBoost in python with:
 - maxdepth 3, up to 1000 rounds
 - Early stopping if test loss doesn't improve for 10 rounds
- Running DNNs / CNNs in pytorch, python3 using Triforce
 - Dropout 0.2
 - Adam, learning rate 0.001
 - L2 regularization 0.01 ("decayRate")
 - Train for 5-10 epochs depending on window size


Skip Connections

- Basic idea: hardcode Identity function into network, to make other layers learn residual correction to identity
- Appropriate for our case: we know linear regression in ECAL_E, HCAL_E gets close to the right answer
- Performance is similar, training converges faster
 - For Feature Based NN, in 10-20 epochs instead of 40

NIPS CNN Architecture

- Modifications:
 - 51x51x25 ECAL input
 - 11x11x60 HCAL input
 - 3 conv filters for HCAL
 - Skip connections for ECAL_E, HCAL_E

