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OverviewOverview
● Last week showed that outliers are affecting Variable Angle 

regression resolution results
— Using simple RMS, sensitive to outliers

● This week: motivate and show final cleaning prescription
● Also show regression results vs eta
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Reco / True EnergyReco / True Energy
● See small fraction of electrons where ECAL+HCAL energy 

within selected window is a small fraction of true E
— More pronounced at low E

● Propose to cut at 0.66
— Removes 0.08% of events overall, 0.5% at lowest E

Variable Angle Electrons

All energies Zoom on low energy

Log color scale
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HCAL / ECAL EnergyHCAL / ECAL Energy
● After Reco/True cut, still see some high energy electrons 

where H/E is quite large
— Would be anyway removed in any analysis selection

● Propose loose cut of H/E < 0.4
— Removes about 0.1% of electrons overall 

Variable Angle Electrons

All energies

Log color scale
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Regression ResultsRegression Results
● Smooths regression results at high Energy
● Variable angle performance is now close to Fixed angle

Electrons
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Cleaning SummaryCleaning Summary
● Proposed cleaning cuts for Electrons, also Photons, Pi0s:

— (ECAL_E + HCAL_E) > 0.66 * energy
— HCAL_E / ECAL_E < 0.4

● Removes:
— 0.2% overall for electrons 
— 0.6% overall for photons and pi0s

● Only applying for result plots at this time, not training
— Would need to modify data loader in Triforce to deal with 

variable length input samples

● Not sure yet for charged pions
— Fixed angle: was using (ECAL_E + HCAL_E) > 0.3 * energy

• Removes around 0.2% in fixed, 1% in variable angle samples
— Much wider spread of energies, so tighter cuts remove larger 

fraction of events
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Regression vs Eta, E > 100Regression vs Eta, E > 100
● Bias flat to ~0.3% with eta, resolution even flatter

Electrons
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Regression vs Eta, E < 100Regression vs Eta, E < 100
● For lower E, bias increases at highest eta
● Resolution again flat to within around 0.5%

Electrons
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Eta SummaryEta Summary
● Regression bias and resolution are pretty flat vs eta

— Some slight bias at low E, high eta

● Means that variation in eta does NOT explain the residual 
resolution difference between Fixed and Variable angle 
samples



June 8, 2018

10

LCD ML MeetingD. Olivito (UCSD)

Bonus SlidesBonus Slides
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Samples / DetailsSamples / Details
● Samples: new larger window samples, fixed angle, with features

— On culture-plate at caltech:
• /data/shared/LCDLargeWindow/fixedangle/*Escan/*.h5
• /data/shared/LCDLargeWindow/varangle/*Escan/*.h5

— Slimmed versions with only features (no images):
• /data/shared/LCDLargeWindow/fixedangle/*Escan/merged_featuresonly/
• /data/shared/LCDLargeWindow/varangle/*Escan/merged_featuresonly/

— ~800k events, 70% train, 30% test

● Running XGBoost in python with:
— maxdepth 3, up to 1000 rounds
— Early stopping if test loss doesn't improve for 10 rounds

● Running DNNs / CNNs in pytorch, python3 using Triforce
— Dropout 0.2
— Adam, learning rate 0.001
— L2 regularization 0.01 (“decayRate”)
— Train for 5-10 epochs depending on window size
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Skip ConnectionsSkip Connections
● Basic idea: hardcode Identity function into network, to make 

other layers learn residual correction to identity
● Appropriate for our case: we know linear regression in 

ECAL_E, HCAL_E gets close to the right answer
● Performance is similar, training converges faster

— For Feature Based NN, in 10-20 epochs instead of 40

Input
(Cells,
Layers,

Features)

Dense
512 nodes

Relu

(12 nodes
for feature-

based)

Dense
512 nodes

Relu

(12 nodes
for feature-

based)

Output
1 node
Linear

ECAL_E
HCAL_E Weights initialized to 1

(instead of e-02)
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NIPS CNN ArchitectureNIPS CNN Architecture
● Modifications:

— 51x51x25 ECAL input
— 11x11x60 HCAL input
— 3 conv filters for HCAL
— Skip connections for 

ECAL_E, HCAL_E

ECAL_E
HCAL_E

Skip connections
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