Status of HV-CMOS developments within the RD50 collaboration

<u>E. Vilella</u>^{a*}, O. Alonso^b, R. Casanova^d, G. Casse^{a,e}, L. Gonella^f,
A. Dieguez^b, M. Franks^a, S. Grinstein^b, N. Massari^e, L. Meng^a,
F. Muñoz^c, R. Palomo^c, J. Vossebeld^a, C. Zhang^{a,e}

^aUniversity of Liverpool ^bUniversitat de Barcelona ^cUniversidad de Sevilla ^dIFAE ^eFBK ^fUniversity of Birmingham

*<u>vilella@hep.ph.liv.ac.uk</u>

RD50-MPW1

LIVERPOOL RD50

-jubljana, Slovenija

Jožef Stefan"

nstitut

Submitted in November 2017, samples just distributed last week
Designed with PDK LF15A V1.2.0

Overview

ightarrow Models to simulate the sensing diodes

MPW in 150 nm HV-CMOS from LFoundry

- ightarrow Proper verification
- Manufactured on wafers with different substrate resistivities:
 - \rightarrow 500 Ω ·cm (40 samples) and 1.9k Ω ·cm (80 samples)
- Motivation: Test the design aspects of the technology and also implement novel concepts
- Contents:
 - 1) Test structures for TCT/e-TCT
 - 2) Matrix of HV-MAPS pixels with 16-bits counter
 - 26 x 52 pixels
 - 75 μm x 75 μm pixel area
 - 3) Matrix of 40 x 78 HV-MAPS pixels with FE-I3 style RO
 - 40 x 78 pixels
 - 50 μm x 50 μm pixel area
 - ightarrow In both matrices, the analog and digital RO are embedded inside the sensing area
 - ightarrow The two matrices are completely independent between them
- DAQ development → See presentation "DAQ development for the characterization of the RD50 HV-CMOS devices" by Ricardo Marco for RD50 development, also IFAE DAQ

RD50-MPW1 – Sensor

Cross-section

- PSUB \rightarrow Deep p-well layer to isolate RO electronics from DNWELL
- The PSUB/DNWELL junction has a large contribution to the total capacitance of the sensor (capacitance/area 个)
- PSUB only covers NWELLs with RO electronics + small (safe) overlap with neighbouring PWELLs to avoid unwanted currents from DNWELL

50 μm x 50 μm pixel capacitance

TCAD simulations

(a) PWELL/PSUB overlap is 0 $\mu m \rightarrow$ DNWELL/NWELL current flow (the depletion regions merge)

<u>RD50-MPW1 – Pixel schematic</u>

- o The analog readout is based on a biasing circuit, CSA, low-pass/high-pass filters and discriminator
 - The CSA is a single folded Cascode with pMOS input transistor with programmable discharging current
 - The baseline (BL) voltage and low-pass/high-pass filters are adjustable
 - The discriminator has a local 4-bit DAC to compensate for offset variations
- The digital readout is based on the FE-I3:
 - Two 8-bit DRAM memories that continuously store two time stamps (Leading Edge, Trailing Edge)
 - ToT = TE LE (off-chip)
 - One 8-bit ROM memory to store the pixel address
 - Electronics (edge detector) to process the output of the discriminator and tell when the LE and TE have to be stored
- Pixel receives an 8-bit Gray encoded TS running at 40 MHz

RD50-MPW1 – Layout

Post-layout simulation of analog and digital readout

5/16

RD50-MPW1 – Post-layout simulations

) CL 6/16 Eva Vilella

FRP

<u>RD50-MPW1 – Test structures</u>

- A) TCT/e-TCT/TPA
 - 3 x 3 matrix of 50 μm x 50 μm
 - HV-CMOS pixels without electronics

B) TCT/e-TCT

- 2 x 3 matrix of 75 μm x 75 μm
- HV-CMOS pixels without electronics

C) Fast measurements (with a laser)

- 3 x 3 matrix of 50 μm x 50 μm
- HV-CMOS pixels

D) Sensor capacitance measurement

- 1 single pixel with 50 μm x 50 μm
- 1 single pixel with 75 μm x 75 μm
- E) 1 avalanche photodiode for I-V measurements

RD50-ENGRUN1

<u>Aims</u>

- Improve the current time resolution of HV-CMOS sensors (by a factor 10)
- Implement different sensor cross-sections
- Study options to increase the device area beyond the reticle size limitation
- Measure the sensors performance after a wide range of fluences

Technology

- 150 nm HV-CMOS from LFoundry
- Large area submission (2 cm x 2 cm, engineering run)

Design effort

- FBK (N. Massari, M. Perenzoni and C. Zhang)
- IFAE (R. Casanova)
- Uni. Barcelona (O. Alonso, +1)
- Uni. Liverpool (S. Powell, E. Vilella and C. Zhang)
- Uni. Seville (F. Muñoz and R. Palomo)

TCAD simulations + DAQ development

	ads		IO pads	IO pads	IO pads	IO pads	IO pads		ads
	ō								<u>а</u> 0
Tes		t 1						Tes	st 4
	IO pads		Matrix 1	Matrix 2	Matrix 3	Matrix A	Matrix 5		IO pads
	Tes	t 2	with an analog timing circuit to sample 3-5 points of the sensor rising time and extrapolate t ₀	with a time-to- digital converter circuit to sample the sensor time	with super-fast pixel, ideally within 1-2 BXs	imaging matrix with different sensor cross- sections	pixels with different separations between rows	Tes	st 5
	IO pads								IO pads
ſ	Test	t 3						Tes	st 6
			IO pads	IO pads	IO pads	IO pads	IO pads		

Test structure 1 Test structure 2 Test structure 3 Test structure 4 Test structure 5 Test structure 6 Simple CMOS capacitors to study oxide thickness 10 x 10 matrix of very small pixels with passive RO 10 x 10 matrix of very small pixels with 3T-like RO Small matrix of pixels for TCT, e-TCT and TPA-TCT Single pixels for sensor capacitance measurements ...

<u>RD50-ENGRUN1 – Matrix 1</u>

Matrix with analog sampling circuit

- It includes 'n' sample & hold circuits that sample the output voltage of the shaper and store the analog voltages.
- The 'n' hold signals (WR₀, WR₁, ..., WR_n) are generated with a chain of delay elements.
- The delay between the 'n' hold signals can be tuned externally (i.e., 1.04 ns@1 V, 1.94 ns@ 1.1V).
- The sample & hold circuits enter the hold mode when there is an event in the pixel.
- The 'n' analog voltages are stored in 'n' analog memories based on MIM capacitances.

Eva Vilella – 32nd RD50 Workshop – Hamburg, 4-6 Jun. 2018

9/16

LIVERPOOL

IO pads	IO pads	IO pads	IO pads	IO pads	IO pads	IO pads
Test 1	Matrix 1 with an analog timing circuit to sample 3-5 points of the sensor rising time and extrapolate t ₀	Tix 1 analog rcuit to e 3-5 of the rising and late to 10 pads	Matrix 3 with super-fast pixel, ideally within 1-2 BXs	Matrix 4 imaging matrix with different sensor cross- sections	Matrix 5 pixels with different separations between rows	Test 4
IO pads						IO pads
Test 2						Test 5
IO pads						IO pads
Test 3	IO pads					Test 6

Matrix with fast pixels

See presentation "Design of High-speed Front-ends for HV-MAPS" by Chenfan Zhang.

Matrix with different sensor cross-sections

- Study and compare pixels with different cross-sections fabricated on the same HV chip (i.e., low fill-factor vs. high fill-factor).
- TCAD simulations to study sensor performance before fabrication (plots by B. Doyle, R. Leigh and L. Gonella at Uni. Birmingham).

RD50-ENGRUN1 – Matrix 5 original idea

Motivation

- Increase the device area beyond the reticle size limitation
- We want to know if it is possible to merge the depletion regions of pixels from 2 different samples

RD50-ENGRUN1 – Matrix 5 new approach

Matrix with different separations between rows

- Study the effects of dead areas between pixels on the charge
- collection efficiency of the sensor
- This matrix includes a few sub-matrices with different separations between rows of pixels
- The separations range between a few μm to some hundreds of μm
- Doing TCAD simulations at the moment

Conclusion

- Generic R&D work to push forward some of the features of HV-CMOS sensors is being done within the RD50 collaboration.
- An MPW in the 150 nm HV-CMOS technology from LFoundry S.r.l. (RD50-MPW1) has been designed and fabricated to test the design aspects of the technology and also implement novel concepts.
 - This chip integrates 2 fully monolithic matrices of HV-MAPS pixels + test structures.
 - A DAQ is being developed and measurements will start soon.
- The knowledge gained with RD50-MPW1 is being used to design a large area demonstrator (RD50-ENGRUN1) in the same technology.
 - TCAD simulations are being performed.
 - A DAQ is being developed.
- RD50-ENGRUN1 integrates novel detector concepts to improve the time resolution and speed of the detector, amongst other features.
- The prototypes will be extensively measured.

Many thanks for your attention!

