

32nd RD50 Workshop

4–6 June 2018 Hamburg

High – Density Low Gain Avalanche Detectors (HD-LGAD)

an RD50 common project proposal

Giovanni Paternoster Fondazione Bruno Kessler

(INFN Torino, Univ. Torino, Univ. Trento, TIFPA, FBK)

- 1. Thin-LGAD: technology development status
- 2. LGAD segmentation: Fill Factor losses
- 3. Segmentation strategies of LGAD sensors
- 4. New strategies to improve the Fill Factor
 - Optimized JTE
 - Narrow Trench isolation
- 5. RD50 proposal for HD-LGAD developments

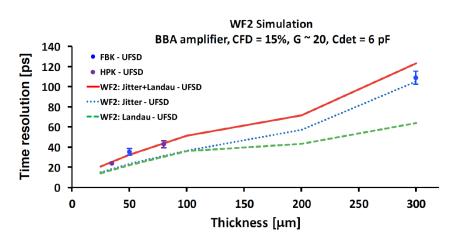
Low Gain Avalanche detectors

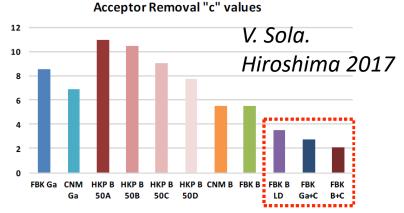
Ultra Fast Silicon Detectors = a candidate for 4-D tracking

Desired Features

Ultra Fast timing resolution
 ≈ 10 - 20 ps

Time resolution < 30 ps recently demonstrated


2. Radiation hardness at high fluences


Promising Results with Boron Carbonated recently obtained up to fluences of 1.5 $10^{15} n_{eq}/cm^2$

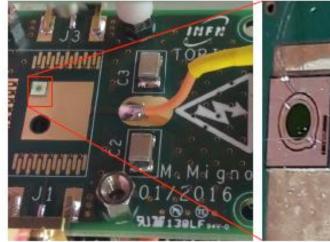
3. High **spatial resolution**: \approx 10's -100's of µm

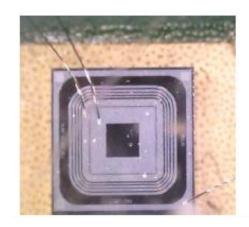
Small pixels

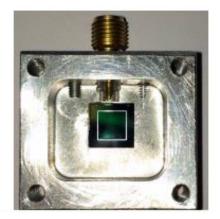
Receipt for a high radiation resistant detector:

- Continue using Boron
- Add Carbon
- Make the gain layer thin (LD)

preliminary

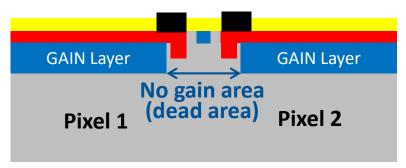

Low Gain Avalanche detectors

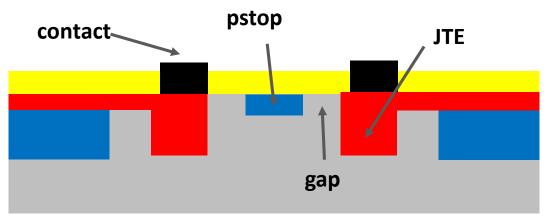

The "perfect" detector should feature at the same time:


- Thin substrate (< 50 um)
- Small Pixel (~100 um)
- Carbonated gain layer and thin multiplication layer

not easy to produce thin LGAD with small pixels at the same time

Typical Pixel size \approx 500 um - 1 mm. There is still some work to do ...

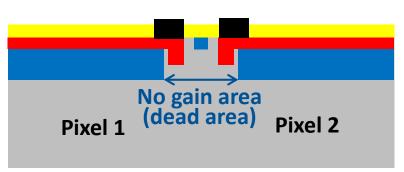




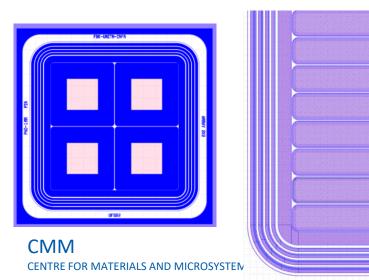
CMM CENTRE FOR MATERIALS AND MICROSYSTEMS

LGAD Segmentation problem: Fill Factor losses

Current technology (FBK UFSD2)

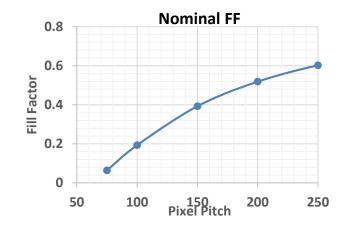


- Detectors with internal gain are typically affected by Fill Factor reduction.
 - Two regions are present : i) GAIN region (pixel core) ii) NO-GAIN region (pixel border)


Fill Factor = $\frac{\text{gain area}}{\text{total area}}$

- The pixel border is a dead-region. The carriers generated in this area are not multiplied.
 - The pixel border region is necessary to host all the structures to control the E field (JTE, p-stop, etc..). Its dimensions are due to design and technology constraints

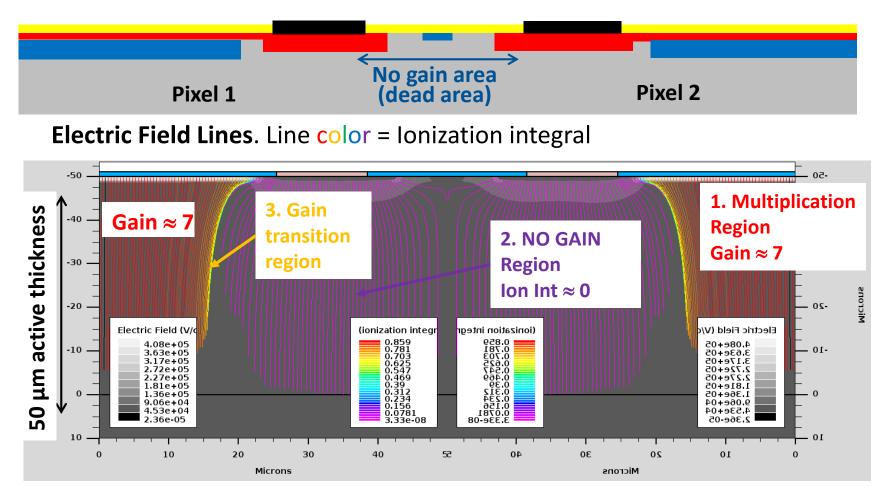
EXAMPLE LGAD Segmentation problem : Fill Factor losses


FBK – UFSD2 Pad Array and Strips $1x1 \text{ mm}^2 \text{ pixels}$ $200 \mu \text{m} \text{ Strips}$ - > FF = 87%- > FF = 66%

Current technology (FBK UFSD2)

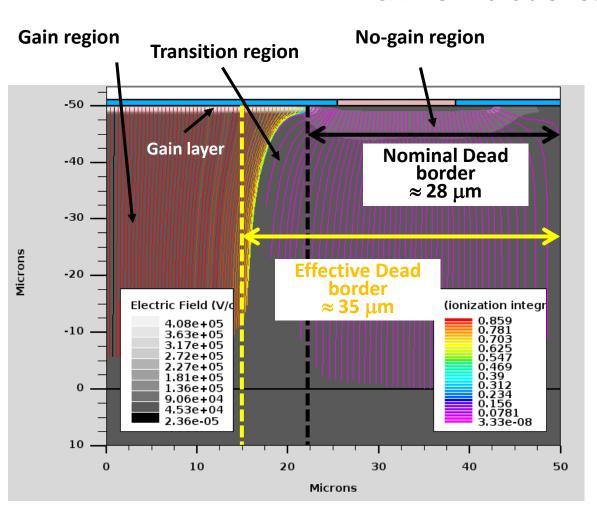
Nominal No gain area width $\approx 66 \ \mu m$

The minimum pixel (strip) dimension are dominated by the Fill Factor. Small pixels are not feasible.



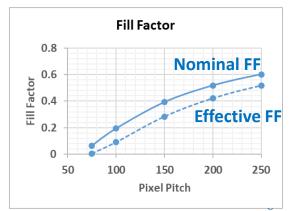
Measured no-gain area width:

- HPK: 100 µm
- **FBK**: 70 µm
- CNM: 70 μm


LGAD Segmentation: Fill Factor losses

TCAD Simulations. Standard technology (UFSD2)

Reverse Bias = 200 Volts


SCAD Segmentation: Fill Factor losses TCAD Simulations.

CMM CENTRE FOR MATERIALS AND MICROSYSTEMS **Nominal dead border:** layout distance from gain layer to the pixel edge

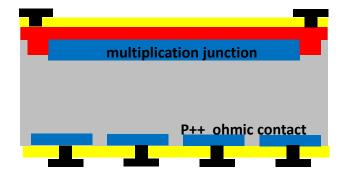
Effective dead border effective distance from maximum gain region (at the detector bottom) to pixel edge

The charges generated in the **transition region** wrap up the multiplication layer and "skip it" . \rightarrow The Gain depends on the depth where the charges are generated.

Experimental measurements

150 μm strips (UFSD2) X-ray beam 20 keV focused \sim 3 μ m Nominal Inter-strip border 0.0 180.0 420.0 60.0 120.0 240.0 300.0 360.0 Gain region 0.0 6 1000.0 4 5 [arb.unit] 66 µm 80 µm 2000.0 Phergy 3 3000.0 2 Maan strip-1 strip-2 strip-3 6 4000.0 Vean energy [arb.unit] - 1 5000.0 <mark>90 μm</mark> 60 μm З 2 1 Nominal FF: 55% 0 Effective FF (Sim): 45% 100 200 300 400 Position [µm] **Measured** FF (50% signal amplitude) $\approx 40\%$

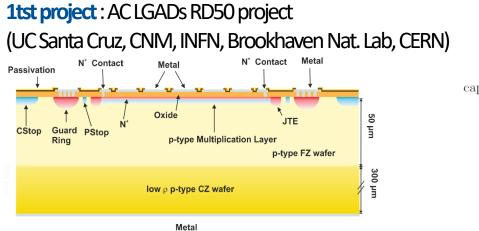
Curtesy of Zhang Jiaguo (PSI). <u>Unpublished results</u> The measured energy/charge as function of beam position crossing three strips

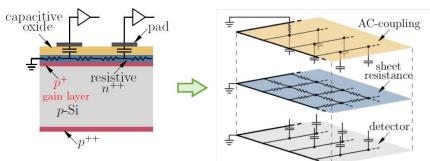

Charles Cher LGAD Segmentation Strategies

Standard: N-side segmentation:

both n+ and the gain layers are segmented

P++ ohmic contact


1. P-side segmentation (i-LGAD): uniform gain layer. the p-layer is segmented (produced at both FBK and CNM)


2-sides process. Not feasible on thin silicon wafers (not good for timing)

2. AC coupling readout of segmented LGAD

Uniform multiplication layer. Only metal is segmented. No dead border regions among pixels

2nd project: RSD Resistive AC-Coupling (M. Mandurrino INFN To)

New strategies to improve FF on n-side segmentation First option: Optimized border region

Standard technology (UFSD1 & 2 batches) Based on Mask Aligner

Resolution=1um. Critical Size = 2um Border width = 66um

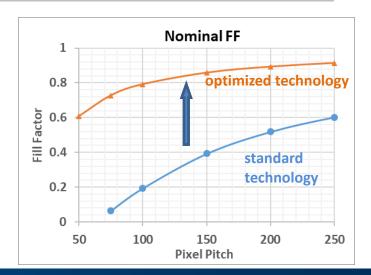
No gain area 11 um

GAIN Layer

Pixel 2

GAIN Laver

Pixel 1


New technology (UFSD 3 batch) Based on Stepper

CMM CENTRE FOR MATERIALS AND MICROSYSTEMS New batch UFSD3 is ongoing. Expected in Q3-2018

Resolution = 0.35 um Critical Size = 0.5 um

Layouts with Border width down to 5.5 um are going to be tested

CMM

New strategies to improve FF First option: Optimized border region

improved technology (Stepper)

Nominal

≈ 5.5 μm

30

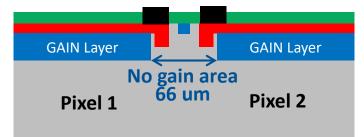
Microns

(ionization integr

40

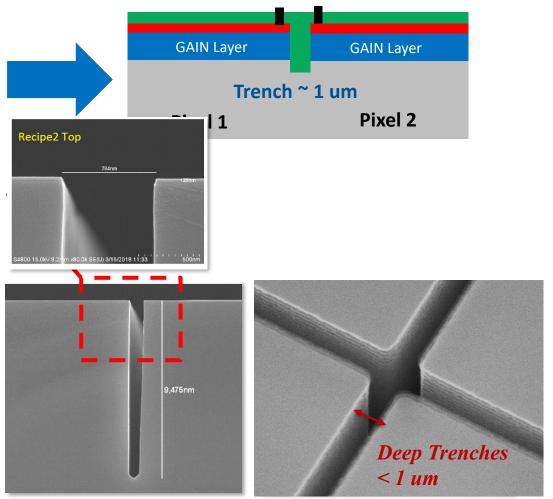
border

standard technology (Mask Aligner)

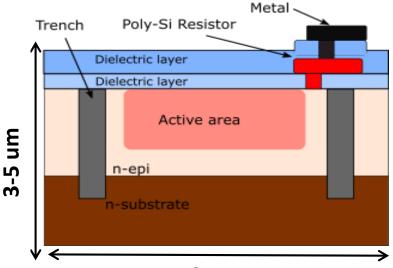

-50 -50 Nominal -45 -45 **Dead border Dead border** \approx 28 μ m -40 -40 Microns **Effective Dead** -35 -35 Effective Dead $\approx 10 \, \mu m$ (ionization integr border ≈ 35 um -30 -30 -25 -25 10 30 10 20 40 50 20 Microns

x6 reduction in nominal dead border region but only a x3 reduction in the effective dead boarder Region. The transition region width is an intrinsic limit of this design CENTRE FOR MATERIALS AND MICROSYSTEMS

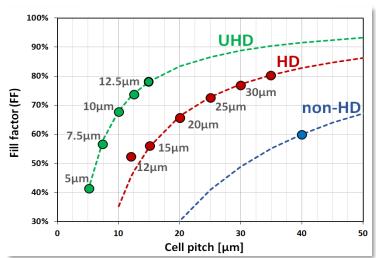
New strategies to improve FF 2nd Option: Trench isolation LGAD

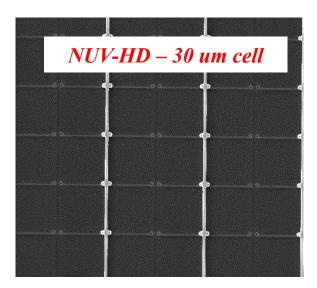

Standard JTE + p-stop isolation

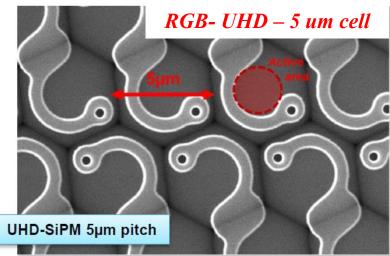
 Trench isolation could drastically reduce the inter-pixel border region down to few microns

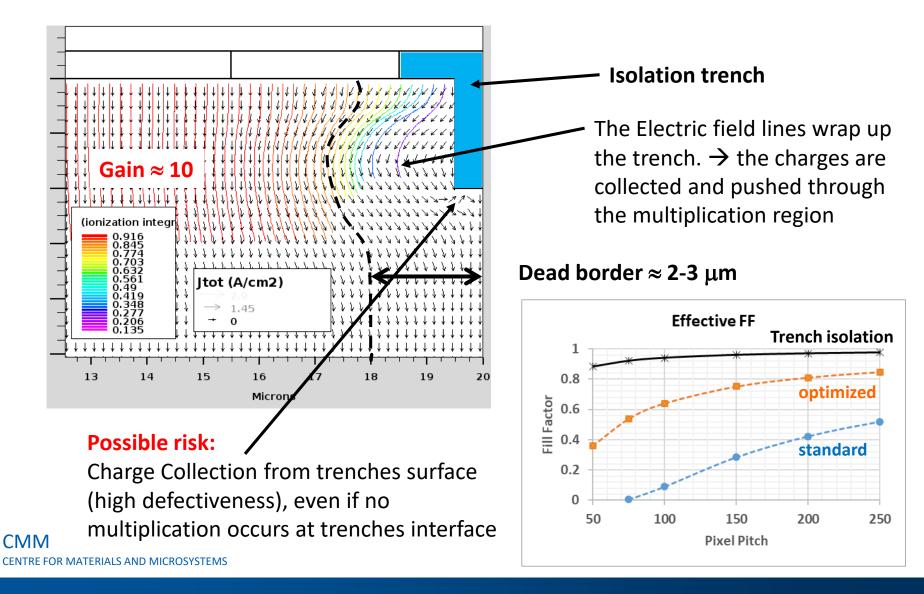

Trench isolation technology

- Typical trench width < 1 um
- Max Aspect ratio: 1:20
- Trench filling with: SiO₂,
 Si₃N₄, PolySi




Trench Isolation


New strategies to improve FF Trench isolation: successfully used in FBK HD-SiPM



New strategies to improve FF 2nd Option: Trench isolation LGAD

RD50 Proposal - HD-LGAD

TITLE: Segmented LGAD with small pixels and high Fill-Factor (High Density LGAD, HD-LGAD)

GOAL: Design and production of thin segmented LGAD sensors with small pixels (<= 100 um) and high Fill Factor (> 80%)

ACTIVITIES:

Activity	Involved Institutes	Duration
Numerical simulation and structure definition	FBK	3 months
Detector Layout and reticle production	FBK, UniTo, UniTN	2 months
Detector Manufacturing	FBK	4 months
Electrical Characterization	UniTo, others	1 month
TCT Characterization	UniTo, others	3 months

- 35 50 um substrates
- Carbon co-implantation
- Trench isolation

Involved institutes: FBK, University Turin, University of Trento and TIFPA

Other institutes shown interest.....

CENTRE FOR MATERIALS AND MICROSYSTEMS

Thank you for your attention!

Giovanni Paternoster Fondazione Bruno Kessler

(INFN Torino, Univ. Torino, Univ. Trento, TIFPA, FBK)

