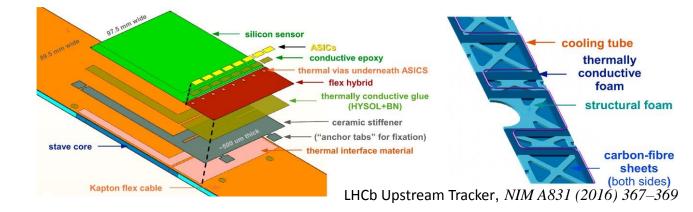


Front-side biasing of n-in-p silicon strip detectors

Marta Baselga^a, Thomas Bergauer^b, <u>Alexander Dierlamm</u>^a, Marko Dragicevic^b, Axel König^b, Marius Metzler^a, Elias Pree^b

a) KIT b) HEPHY

INSTITUT FÜR EXPERIMENTELLE TEILCHENPHYSIK



Why front-side biasing?

Module assembly could be simplified by accessing front-side only

connecting back-side for biasing sometimes tricky

CMS OT proto. module

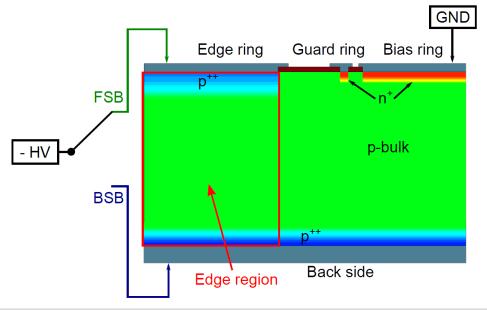
Sandwich structures

Passivated

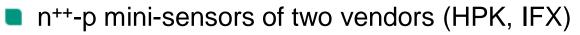
back-side

Disclaimer

- This study focuses on the applicability in large scale systems, for which also a simplified assembly is required
- Most of the previous studies on this subject concentrated on n-type silicon; here we investigate p-type material!
- Study how FSB is influenced by:
 - operation temperature
 - irradiation
 - annealing



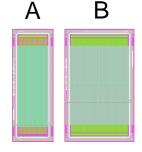
Edge view

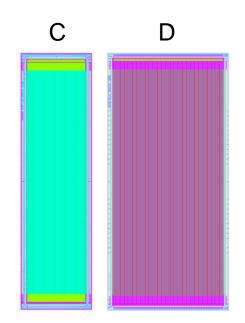

- While bias ring is on ground either back-side (BSB) or front-side (FSB) could be connected to HV
- Edge region forms a p⁺⁺-p-p⁺⁺ contact and is initially conductive
 - resistivity is defined by the bulk and the resistance of the contact to the back-side is defined by the geometry

 $R_{edge} = \rho_{edge} \cdot D / A_{edge}$

problems arise when bulk resistivity increases...

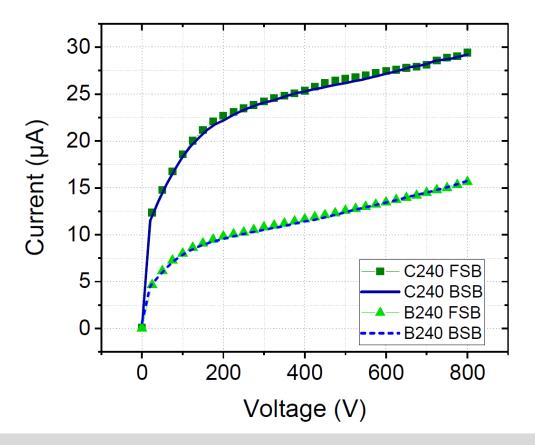
Samples




- most of earlier studies concentrated on n-type material
- Different thicknesses (mainly ddFZ indicated in name)
- Different sensor geometries

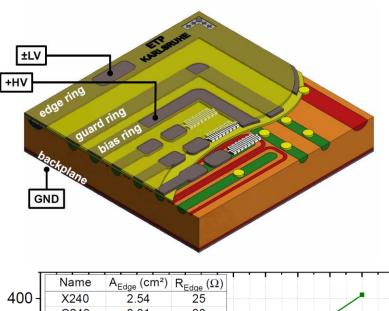
Sensor name	$A_{\rm sensor} ({\rm cm}^2)$	$A_{\rm edge} \ ({\rm cm}^2)$
A200	1.83	0.38
A240	1.83	0.38
B200	3.10	0.46
B240	3.10	0.46
C240	6.96	0.81
X240	96.66	2.54
D200 *	13.49	1.01

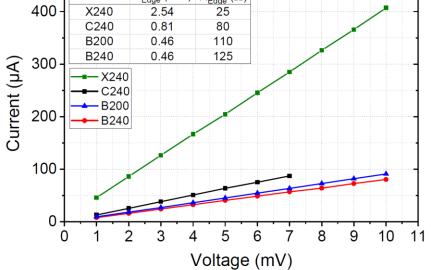
*IFX, thinned



Example before irradiation

- Comparison of IV curves in FSB and BSB configuration can reveal voltage drops if they divert
 - typically they lie on top of each other

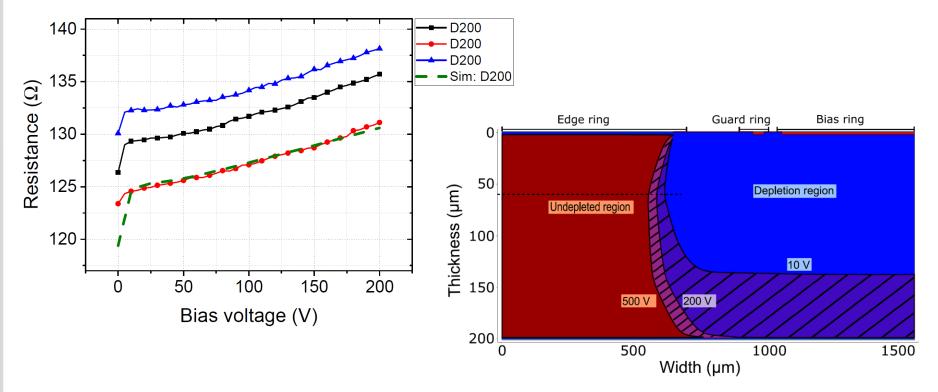




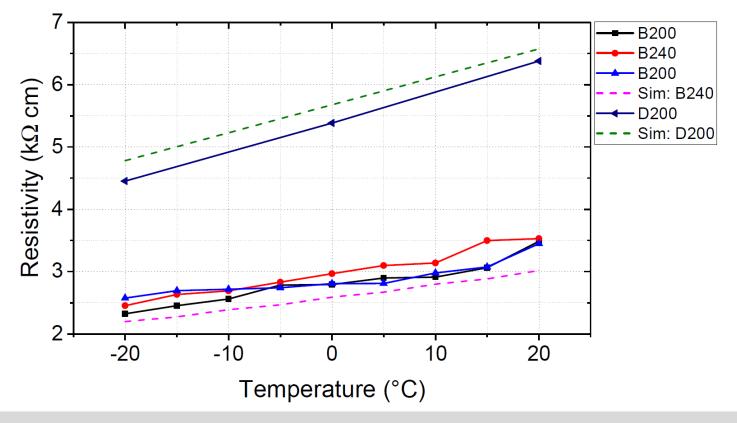
Edge resistivity

- The resistivity can be extracted by an IV curve over the edge, while the sensor is reverse biased
 - need to change potentials of applied bias on the probe station to get a common ground
- Edge resistivity and bulk resistivity are very similar

Material	$\rho_{\rm ER}~({\rm k}\Omega{\rm cm})$	$\rho_{\rm CV}~({\rm k}\Omega{\rm cm})$
$240\mu\mathrm{m},\mathrm{ddFZ}\;(\mathrm{HPK})$	2.7 ± 0.2	3.0 ± 0.1
$200\mu\mathrm{m},\mathrm{ddFZ}\;(\mathrm{HPK})$	2.6 ± 0.4	3.3 ± 0.1
$200\mu\mathrm{m},\mathrm{FZ}$ (IFX)	6.3 ± 0.6	6.5 ± 0.3



Bias voltage dependence


- Edge resistance increases with increasing bias and extending depletion zone
 - shrinkage of edge zone causes reduction of A_{edge}
 - increase supported by TCAD simulations

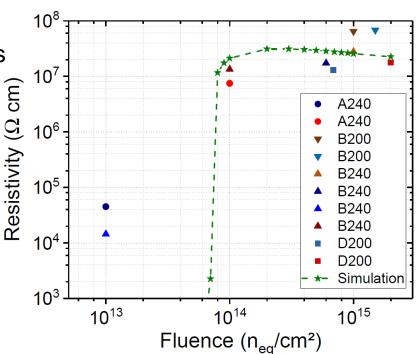
Temperature dependence

- The edge resistivity increases with increasing temperature
 - $\rho \sim T^{3/2}$ (phonon scattering)
 - increase supported by TCAD simulations

Irradiation

- 23MeV proton irradiation at KIT
- Fluences: 1x10¹³n_{eq}/cm² to 2x10¹⁵n_{eq}/cm²
 - (dose: 15kGy 3MGy)
- Performed cold (flushed with cold nitrogen gas of ~-30°C)
- Irradiating one sensor of 10mm x 20mm to 2x10¹⁵ n_{eq}/cm² takes about 20 minutes

http://www.etp.kit.edu/english/irradiation_center.php

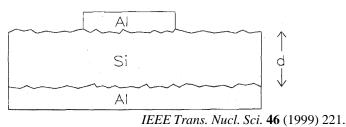

alexander.dierlamm@kit.edu

05.06.2018

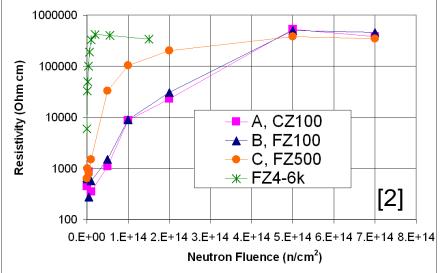
11

Resistivity vs. fluence

- We observe a severe increase of the edge resistivity with fluence
- At $1x10^{14}n_{eq}/cm^2$ of 23MeV protons the edge resistivity reach $10G\Omega cm$
- We also observe a kind of saturation
 - this is supported by TCAD simulations
- Extrapolation to large sensors:
 - 10cm x 10cm sensor
 - fluence > $10^{14}n_{eq}/cm^2$
 - resistance to backplane: ~150kΩ
 - voltage drop: ~150V
 - unacceptable additional load on power system and cooling
 - \rightarrow no FSB at high fluence and large sensors


Extracted resistivity from edge resistivity measurements on irradiated mini sensors for different fluences at a temperature of -20°C.

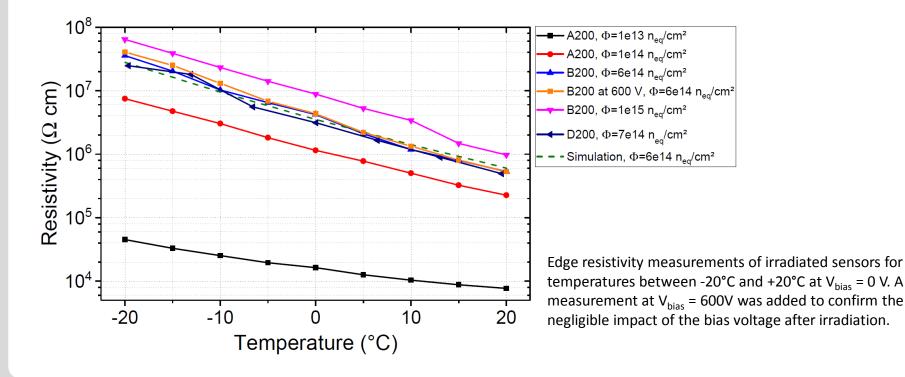
Influence of defects on resistivity



- The resistivity increases due to the process of "space charge limited currents" already known since long (e.g. [1])
 - Current through the edge is increased (bulk damage effect)
 - Large concentration of charge carriers in edge region occupy defects
 - Resulting E-field opposes current flow
 - Effective resistivity increases
- The fast increase of resistivity with fluence was also shown in [2]

[1] A. Taroni and G. Zanarini, "Space charge limited currents in P-N junctions", J. Phys. Chem. Solids 30 (1969) 1861 – 1871.

[2] Z. Li, "Radiation damage effects in Si materials and detectors and rad-hard Si detectors for SLHC", JINST 4 (2009) P03011.



ENB resistivity, obtained from a direct resistor measurement, as a function of neutron fluence for n-type Si materials with different resistivity

Resistivity vs. temperature (irrad.)

- After irradiation we also observe a reversed and more pronounced temperature dependence
 - **non-irrad**: ΔT of -40°C $\rightarrow \rho \sim$ -40%
 - irrad.: ΔT of -40°C $\rightarrow \rho$ from +600% to +6600%

Influence of trapping on resistivity

Gregor showed in [3] that trapping probability decreases with increasing temperature

7.5

6.5

- Therefore less traps are occupied at higher temperature and resistivity is reduced
 - not clear if this explains the increase of resistivity to full extend...

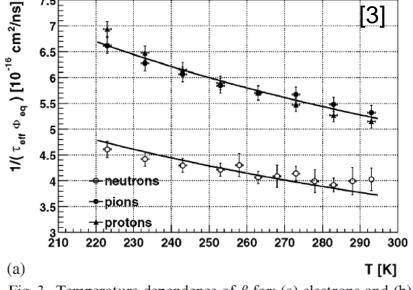
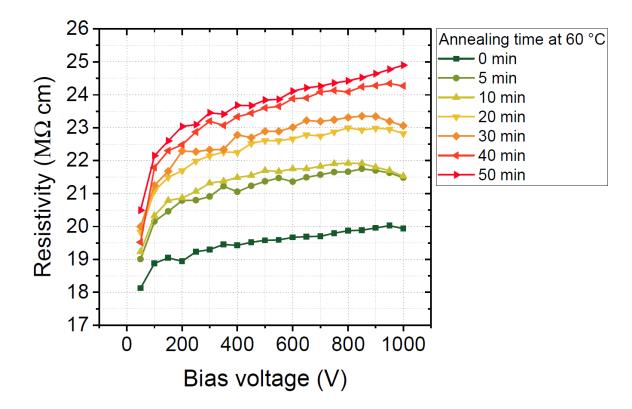


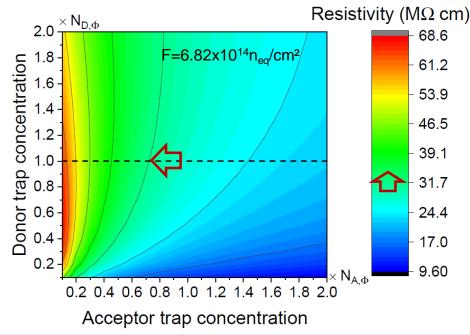
Fig. 3. Temperature dependence of β for: (a) electrons and (b) holes. The measured points are the average of β 's for all measured samples.

[3] G. Kramberger et al., "Effective trapping time of electrons and holes in different silicon materials irradiated with neutrons, protons and pions", Nucl. Instr. and Meth. 481 (2002) 297 – 305.

Front-side biasing


[3]

Resistivity vs. annealing



Measured resistivity of a D200 sensor irradiated to a fluence of 6.82x10¹⁴ n_{eq}cm² with 23 MeV protons, as a function of the bias voltage and different annealing times.

Annealing of traps

- TCAD simulations were performed with varying trap concentrations
 - A decrease of the acceptor trap increases the resistivity at high fluence
- Several studies indicate that (at least) during beneficial annealing the defect concentration is reduced
 - Decrease of N_{eff}, i.e. shallow defects, was studied, but what about annealing of deeper defects responsible for trapping?
 - Deep acceptors like H(116K), H(140K), H(151K) would increase at least after beneficial annealing though...

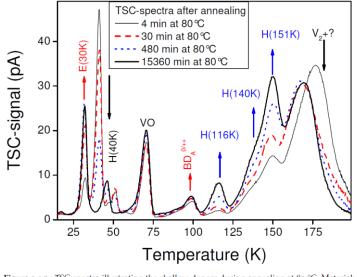
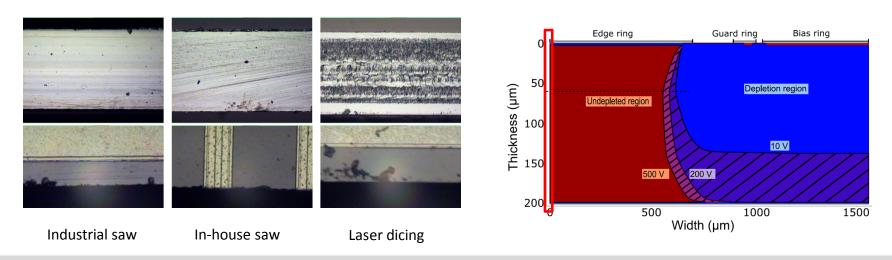


Figure 9.1.5.: TSC spectra illustrating the shallow donors during annealing at 80 °C. Material: Epi-Do, fluence: $\Phi = 2 \times 10^{14}$ n cm⁻², measurement at $V_{bias} = 100$ V.


A. Junkes, PhD, 2011

alexander.dierlamm@kit.edu

Intrinsic vs. practical case

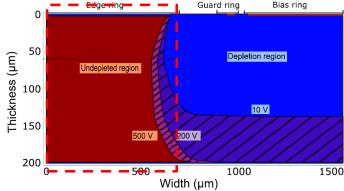
- These studies focused on the intrinsic properties of the silicon bulk
- In practice there could be severe distortions of the lattice at the diced edge
 - Iow ohmic path is possible at the cut edges
 - large scale detectors with long edge are more likely to be affected
 - not wise to rely mass production on such a mechanism
- Probability not too big since all mini-sensors in this study showed high resistance after irradiation without a short-circuit at the edge

Summary

- FSB would simplify module assembly in some cases
- Edge resistivity and dimensions influence parasitic bias resistance
- Very high edge resistivity starting from around 1x10¹⁴n_{eq}/cm²
 - not to be recommended for highly irrad. sensors with large leakage current
- Further findings:
 - Dependence of edge resistivity on T is reversed after irradiation
 - Resistivity further increases with short term annealing
- Further details in CMS NOTE-2018/002 and soon in JINST

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 654168

BACKUP



TCAD details

- Product: Synopsys Sentaurus
- Only oxide charge N_{ox} used; no interface traps or charge
- Simulated geometry: mainly the p⁺⁺-p-p⁺⁺ region
- Physics models:
 - Fermi
 - Hydrodynamic(hTemperature)
 - Mobility (DopingDependence eHighFieldSaturation hHighFieldSaturation CarrierCarrierScattering (ConwellWeisskopf) Enormal)
 - Recombination (SRH (DopingDependence TempDependence ElectricField (Lifetime=Hurkx DensityCorrection=none)) Auger eAvalanche (vanOverstraeten Eparallel) hAvalanche (vanOverstraeten Eparallel) Band2Band (Hurkx))
 - EffectiveIntrinsicDensity(Slotboom)
 - Recombination (CDL(TempDependence DopingDependence))

Defect parameters:

Parameter	Donor	Acceptor
Energy (eV)	$E_{\rm V} + 0.48$	$E_{\rm C} - 0.525$
Conc. (cm^{-3})	$5.598 \text{ cm}^{-1} \times \Phi - 3.949 \cdot 10^{14}$	$1.189 \text{ cm}^{-1} \times \Phi + 6.454 \cdot 10^{13}$
$\sigma(e) \ (cm^2)$	$1.0 \cdot 10^{-14}$	$1.0 \cdot 10^{-14}$
$\sigma(h) \ (cm^2)$	$1.0 \cdot 10^{-14}$	$1.0 \cdot 10^{-14}$

