

Charge collection and annealing studies on 800 MeV proton irradiated AMS H18 HV-CMOS sensors

William Holmkvist^{1,2}, Daniel Muenstermann¹, Marcos Fernandez Garcia^{2,3}, Michael Moll²


¹Lancaster University, ²CERN, ³Universidad de Cantabria

32nd RD50 Workshop, Hamburg, 5th June 2018

Motivation

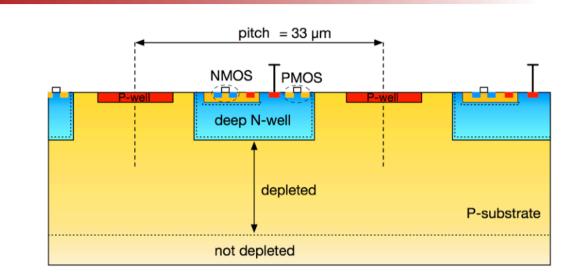
- (Monolithic) HV-CMOS proposed for the 5th layer in HL-LHC ATLAS pixel detector
- CMOS foundry standard substrate uses 10 20 Ωcm silicon
 - Initial small depletion volume, low charge collection -> challenge
 - Mitigated through medium/high resistivity substrates (not always accepted, potentially expensive)
 - Standard substrate available for prototyping at an affordable price through MPWs
 - Differing irradiation behaviour from high resistivity samples
- Previous reactor neutron and 24 GeV/c proton results good, but few fluences
- 800 MeV protons closer to simulated background radiation in HL-LHC (pixel)

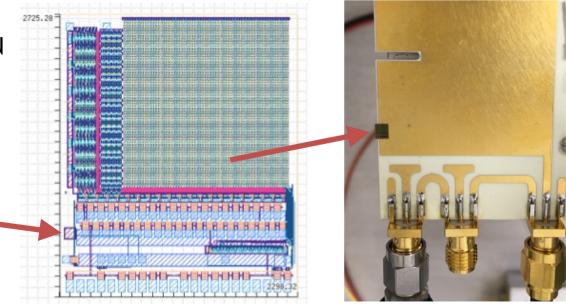
M. Fernandez Garcia, 26th RD50 workshop

A. Fehr, 13th Trento workshop

William Holmkvist, 800 MeV p-irradiated AMS H18 HV-CMOS, 32nd RD50 Workshop, Hamburg

Samples



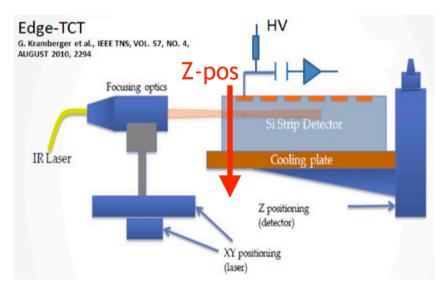

- CCPDv3 chip (AMS H18 HV-CMOS) from an MPW (I. Peric)
- 10 Ωcm substrate, 250 μm thickness
- All tests done on passive diode
 - 100 x 100 µm² n-well without active circuit
- Irradiated with 800 MeV protons at LANSCE (thanks to S. Seidel and M. Hoeferkamp)
- Attached to PCB with Wolbring LS200N
- Wire bonded at Lancaster, digital and analog ground connected and shorted to common ground.

100 µm x

deep N-well

100 µm

5/6/2018


William Holmkvist, 800 MeV p-irradiated AMS H18 HV-CMOS, 32nd RD50 Workshop, Hamburg

TCT+ setup at CERN

- Edge-TCT performed with TCT+ at CERN
- 200 Hz pulsed IR laser
- Ref. diode used for normalising all signals
- All measurements at -15 ± 0.6 °C
- Position scan and focus scan done for each measurement
- First annealing step done at 22 °C to bring all samples to equal conditions
- Subsequent annealing done at 60 $^{\circ}\mathrm{C}$
- Temperature logged with Pt1000 on separate bare PCB

5/6/2018

0

20

10

William Holmkvist, 800 MeV p-irradiated AMS H18 HV-CMOS, 32nd RD50 Workshop, Hamburg

Time [ns]

20

10

0

Waveform of unirradiated HV-CMOS (CCPDv3) Signal [arb.] Signal [arb.] Biases --80V -60V -40V 30 --20V 30 0V

5

4

2

3

- Signal at V=0 vanishes after 3e14 n_{eq}/cm² • Fast (<2 ns) charge collection at all fluences
- Rise time negligibly reduced

Waveforms taken at peak CC

Waveforms

6

Time [ns]

Biases

--80V -60V

-40V

--20V

V0

5

Waveform of 1.28e16 n_{eg}/cm² p-irrad CCPDv3

2

3

Charge collection

- Charge collection peaking at around 1 -2e15 n_{eq}/cm²
- Slight decrease for low fluences
- Note: sides unpolished
- Electric field visible on the backside
- CC profile unchanged with temp.
- Backside collection possibly due to light diffraction or Schottky junction

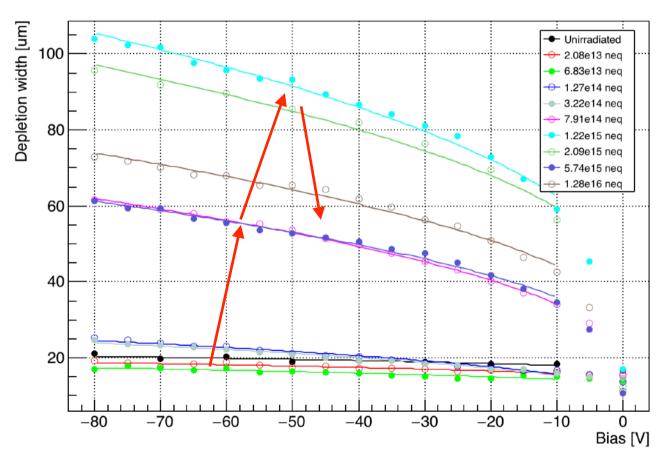
CC in 8 ns in 800 MeV p-irrad CCPDv3 at -80 V

Total collected charge

Total CC in 8 ns, normalised to unirradiated sample

- Normalised total CC [arb.] 820% 100% 61% 10^{-3} 10⁻² **10**⁻¹ ¹Fluence [10¹⁵ N_{ed}/cm
- Calculated through integration over the charge collection
- Charge collection at backside not included
- Lowest fluence represents unirradiated sample
- Increase up to over 800% of initial value
- Slight decrease at lower fluences can pose a challenge

Depletion depth



- Depletion depth defined as FWHM of charge collection curve
- Fit eq.:

$$d = d_0 + \sqrt{\frac{2 \,\varepsilon_{Si}}{e_0 \,N_{eff}} V_{sub}}$$

- *d*₀ and *N*_{eff} are fitting parameters.
- Low voltages not included in the fit due to large uncertainty of FWHM

Depletion width calculated from FWHM of CC in 8 ns

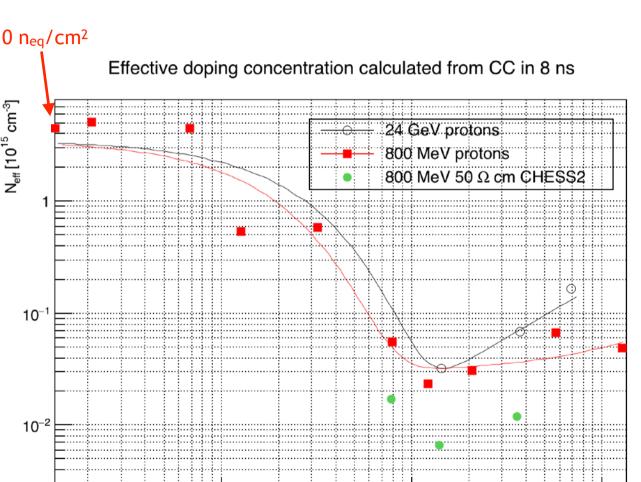
William Holmkvist, 800 MeV p-irradiated AMS H18 HV-CMOS, 32nd RD50 Workshop, Hamburg

• *N_{eff}* acquired from fitting parameter on previous slide.

• Nominal *N_{eff}* is 1.32e15/cm³ for 10 Ω cm, measured 3.51e15/cm³ (~4 Ω cm)in unirradiated sample.

Effective doping concentration

N_{eff} [10¹⁵ cm⁻³]


10-

 10^{-2}

- Incomplete acceptor removal formula fit to N_{eff} , $N_{eff,0}$ fixed to 3.51e15
- N_A = 3.48e15, c = 6.62e-15, g_c = 2e-3
- 24 GeV data for comparison, CCPDv3 10 Ω cm, M. Fernandez Garcia, 27th RD workshop
- Green data points for comparison, 50 Ω cm. B. Hiti, 31st RD50 workshop, 12/2017

5/6/2018

$$N_{eff} = N_{eff,0} - N_A \left(1 - exp(-c \cdot \Phi_{eq})\right) + g_C \Phi_{eq}$$

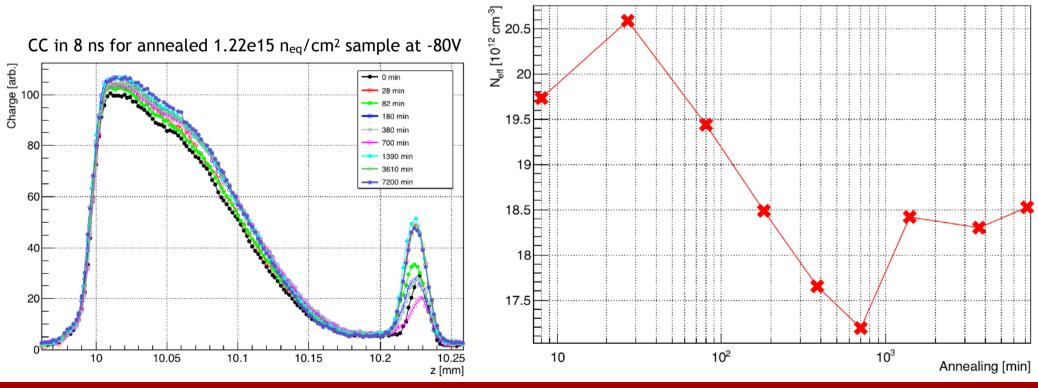
10⁻¹

Fluence $[10^{15} N_{eo}/cm^2]$

N_{eff} after annealing

- Samples with two highest fluences had initially 6300 min at RT
- First annealing step at RT to 6300 min for all samples. (eq. 28 min at 60 °C, Hamburg model)
- Small increase for lower fluences

5/6/2018

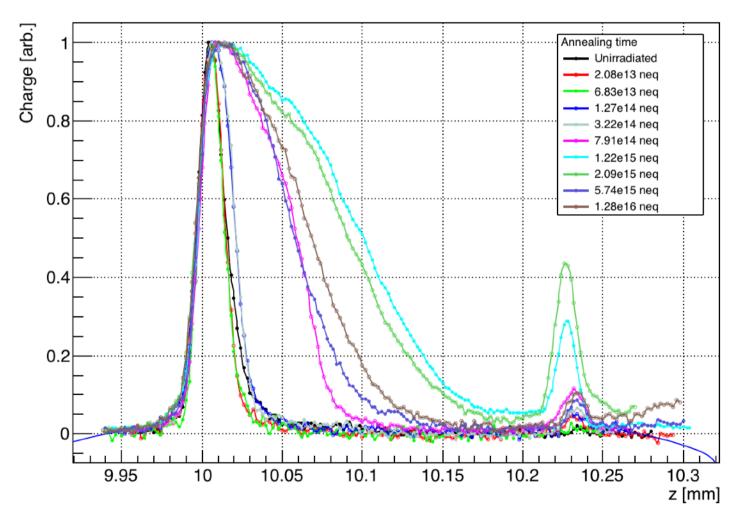

• Negligible change for higher fluences

N_{eff} after annealing

- 10~15% Increase in CC after ~ 700 min at 60 °C
- No reverse annealing observed
- Change in CC at backside possibly due to slight change in laser focus
- Similar to epitaxial 10 Ωcm p-type pad diode results. P. Almeida, 31st RD50 workshop

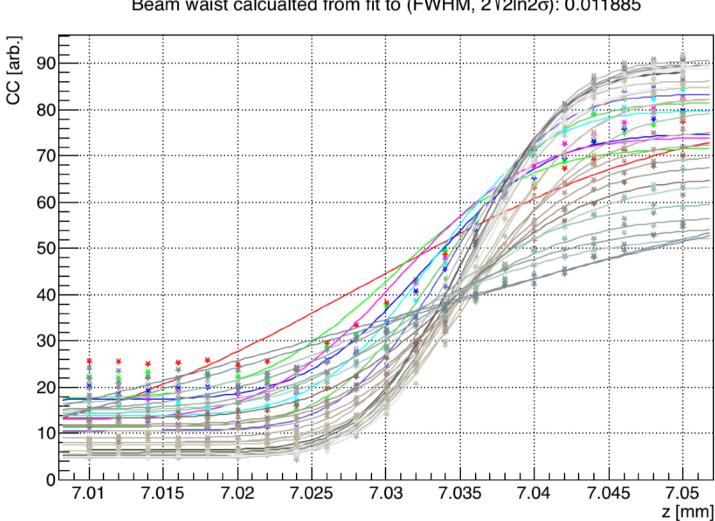
 N_{eff} calculated from CC in 8 ns for annealed 1.22e15 n_{eq}/cm^2 sample

William Holmkvist, 800 MeV p-irradiated AMS H18 HV-CMOS, 32nd RD50 Workshop, Hamburg



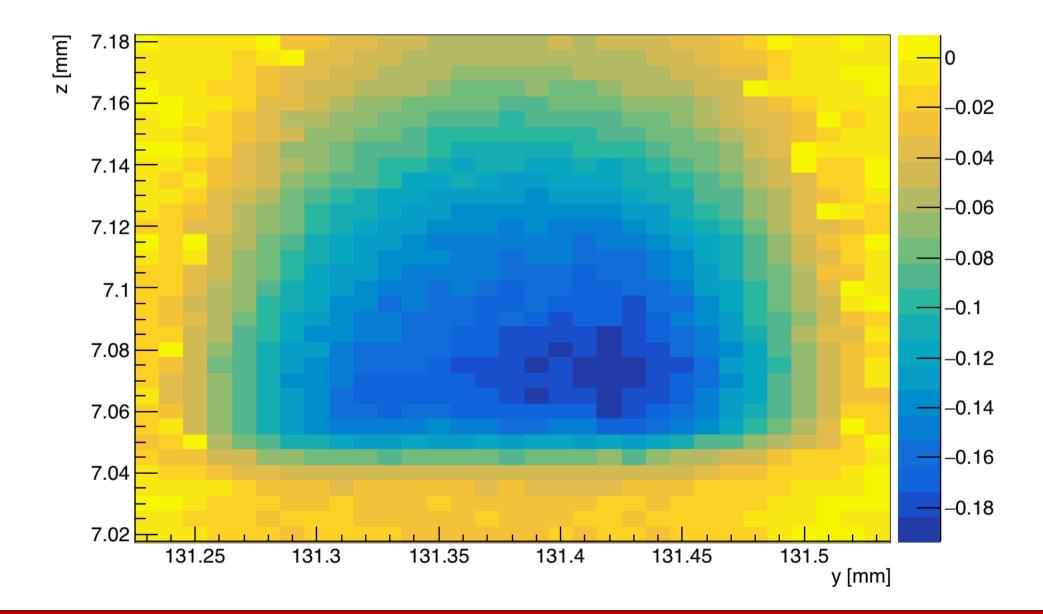
- Results in agreement with 24 GeV and 16.7 MeV proton irradiated. Charged hadrons show much stronger acceptor removal.
- Decrease in charge collection at low fluences (~7e13 $n_{eq}/cm^2)$ for low resistivity a challenge.
- 800 MeV irradiated 10 Ωcm HV-CMOS:
 - Depletion region grows after ~5e14 n_{eq}/cm^2
 - Maximum reached around ~1-2e15 n_{eq}/cm^2
 - Still substantial signal and large depletion region after 1.3e16 n_{eq}/cm^2
 - Slight increase in charge collection after annealing
 - No reverse annealing visible up until ~7000 min at 60 °C
- Mixed irradiations similar to simulated HL-LHC background radiation to follow

Backup

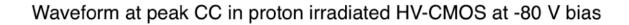


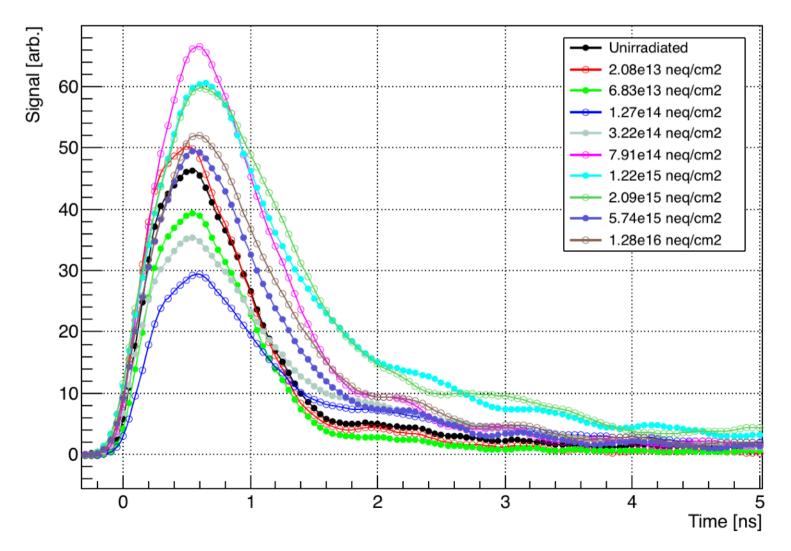
Normalised charge collection in 8 ns at -80 V bias

Calculation of beam waist



Beam waist calcualted from fit to (FWHM, $2\sqrt{2ln2\sigma}$): 0.011885


YZ plot of 2.09e15 neq/cm2



Waveform for all fluences

