

Overview of Radiation Damage Effects Measured by the LHC Experiments

Summary from the Inter-Experiment Workshop from April 2018

Aidan Grummer (University of New Mexico)

On Behalf of the ATLAS/CMS/LHCb/ALICE/RD50 Participants at the April Workshop

32nd RD50 Meeting DESY, Hamburg, Germany 5 June 2018

A. Grummer

Introduction

- A lot of great work was shown at the LHC Radiation Damage Workshop in April 2018
- I will summarize the sensor measurements session from that meeting
- The following detectors reported results:
 - The ATLAS Pixel Detector and Semiconductor Tracker (Aidan Grummer, Julien Beyer, Taka Kondo)
 - The CMS Pixel Tracker and Strip Tracker (Julia Hunt)
 - The LHCb Vertex Locator and Strip Tracker (Vinícius Franco Lima, William Barter)

^{*}Radiation effects at the LHC experiments and impact on operation and performance, <u>https://indico.cern.ch/event/695271/overview</u>

ATLAS Detector

- The ATLAS Pixel detector is made up of 4 barrel layers and 3 endcap disks on each side
- The Semiconductor Tracker surrounds the Pixel detector and is made up of 4 barrel layers and 18 endcap disks

Diagram of the Pixel Detector

Leakage Current in the ATLAS Pixel Detector

- Average leakage current data compared to the average scaled Hamburg Model predictions for each barrel layer through 2017
- The Hamburg Model predictions have been scaled to match the measured leakage current data

- Measurements on each layer are averaged over a representative sample of modules in η and ϕ .
- The measurements are consistent with expected higher levels of radiation for sensors closer to the beam line.
- The Hamburg Model* fit is qualitatively good over the entire range

Aidan Grummer, <u>https://indico.cern.ch/event/695271/contributions/2958673/attachments/1637571/2613408/Grummer_RadiationEffects.pdf</u> * M. Moll et al., Leakage Current of Hadron Irradiated Silicon Detectors - Material Dependence. Nucl. Instrum. Meth. A , 426(87), 1999.

A. Grummer

Fluence Comparisons

- Fluence predictions made with Pythia 8 + FLUKA and Pythia 8 + Geant 4 are compared to the fluence determined with the leakage current data and Hamburg Model, for the **IBL**
- Comparison of fluence predictions by Pythia 8 + FLUKA to the fluence determined from leakage current data combined with the Hamburg Model, for the B-Layer
- Clear |z|-dependence differences are seen between simulation and data

ATLAS Pixel Depletion Voltage

- Simulations of depletion voltage in the B-layer and IBL are shown below
- Decreasing depletion voltage before type-inversion is apparent
- We see strong reverse annealing during Long Shutdown-1 (LS-1) for the B-Layer
- It is difficult to accommodate all data points with Hamburg Model, but scan points are limited
- Finally, predictions through 2018 are also shown

Julien Beyer, https://indico.cern.ch/event/695271/contributions/2958674/attachments/1637640/2613544/beyer_depl_volt_ATLAS.pdf

ATLAS Semiconductor Tracker Leakage Current

- Average measurements of the leakage current for each of the 4 barrel layers on the ATLAS Semiconductor Tracker with greater than 100 fb⁻¹ delivered luminosity were presented
- These measurements were found to agree well with both the Sheffield-Harper Model* and Hamburg Model

Taka Kondo, <u>https://indico.cern.ch/event/695271/contributions/2964668/attachments/1637686/2613628/RadDamageWksp_20180423_Taka.pdf</u> * R. Harper, Thesis, Sheffield University (2001)

ATLAS Semiconductor Tracker Depletion Voltage

Prediction

HV scan data

- Predictions of the full depletion voltage made with the Hamburg Model are shown here
- Average cluster sizes in Barrel 3 as a function of HV on Nov. 2015 and Nov. 2017 are also shown, corresponding to full depletion voltage of 30 V (n-type) and 30 V (p-type), respectively, before and after type inversion.

CMS Detector

- Results presented for the 3 barrel layer CMS Pixel Tracker
- As well as for the surrounding Inner Barrel, Outer Barrel and Endcaps of the Strip Tracker

CMS Pixel Tracker

- Simulation of the full depletion voltage for the three Pixel Tracker layers as a function of time is presented
- The simulations are based on the Hamburg Model
- Plateaus in the simulation reflect the long shutdown 1 and other LHC technical stops
- Data from high voltage scans are also shown

Julia Hunt,

https://indico.cern.ch/event/695271/contributions/2944276/attachments/1637579/2613429/2018_04_23_Julia_Hunt_Pixel_and_Strip_rad_dam.pdf

CMS Strip Tracker Inner Barrel Leakage Current

- Leakage current data of the four Tracker Inner Barrel layers versus delivered luminosity (greater than 120 fb⁻¹) is shown in the figure
- The data are compared to simulation from the Hamburg Model
- There is approximately 20% underestimation of leakage current by the Hamburg Model

CMS Strip Tracker Inner Barrel Depletion Voltage

- Prediction of the full depletion voltage on Layer 1 of the Tracker Inner Barrel is made and compared to measurement for one example module.
- Full depletion voltage simulations agree well in the beginning, and start to deviate when approaching the inversion point.

Christian Barth, https://indico.cern.ch/event/663851/contributions/2711525/attachments/1561114/2457719/RD50_2017_V1.pdf

CMS Strip Tracker

• Extrapolation of the expected full depletion voltage after delivered luminosity of 400 fb⁻¹ during LHC Run 3 on a per module basis is shown in the figure here

LHCb Detector

 Studies of the leakage current and depletion voltage for the Vertex Locator (VELO) and the Silicon Tracker were presented

LHCb Vertex Locator Leakage Current

- Average measurement of the leakage current versus date for the Vertex Locator is shown in the figure
- The delivered luminosity is greater than 7 fb⁻¹

Vinícius Franco Lima,

https://indico.cern.ch/event/695271/contributions/2958675/attachments/1637589/2613893/lhcb_IV_radiationeffectsCERN_4.pdf

5 June 2018

LHCb VELO Depletion Voltage

- Depletion voltage scan from Nov. 2017 compared to the Hamburg Model prediction is shown on the left
- Predictions of the depletion voltage for individual sensors is shown on the right and predictions are made into 2018 Potential 2018 data

• Possible warming of VELO to eg. 20°C for 5 days in September Technical Stop to allow beneficial annealing and further study of Hamburg Model.

William Barter, https://indico.cern.ch/event/695271/contributions/2958676/attachments/1637634/2613706/DepletionVoltageMeasurements.pdf

LHCb Silicon Detector Leakage Current

- Measurement of leakage current in the LHCb silicon detector sensors is shown
- The prediction is made with the Hamburg Model and agrees well with the data

LHCb Silicon Detector Depletion Voltage

• Measurements of the depletion voltage versus fluence and versus date in the Silicon Detector are compared to the Hamburg Model

Final Comments

- This has been an overview of sensor measurements discussed at the LHC inter-experiment radiation workshop
- A lot of important work has been accomplished and presented at that meeting
- Some discrepancies between data and simulation will motivate further analysis
 - An open question from the LHC Radiation Workshop: How much does the choice of bias voltage affect the leakage current level and can this be accounted for in the Hamburg Model?
 - We have seen some puzzling comparisons with the predicted fluences from simulation (Pythia8 + FLUKA/G4)
 - Currently studying alternative min-bias p-p event generators such as DPMJET3 to investigate the |z|-dependence