

Inclusive lepton fluxes and numerical methods

Anatoli Fedynitch

Deutsches Elektronen Synchrotron (DESY) Zeuthen, Germany

Atmospheric leptons: muons & neutrinos

- For <u>high precision</u> calculations all phenomena need accurate modeling
- Uncertain "ingredients":
 - Cosmic ray spectrum and composition
 - Hadronic interactions
 - Atmosphere (dynamic, depends on use case)
 - (Rare) decays
 - Geometry, magnetic fields, solar modulation
- No clear prescription how to handle uncertainties.
- Energy range MeV EeV!

Typical application

Inclusive, differential Flux of particles per unit area, angle and time

$$\Phi = \frac{\mathrm{d}\phi}{\mathrm{d}E} = \frac{\mathrm{d}N}{\mathrm{d}E \,\mathrm{d}A \,\mathrm{d}\Omega \,\mathrm{d}t}, \quad [\Phi] = \frac{\mathrm{particles}}{\mathrm{GeV \, s \, sr \, cm^2}}$$

Effective area: converts physical units to event numbers

Flat or volumetric detector (e.g. IceCube)

How many signal or background events do I expect?

$$N_{\text{events}} = 4\pi \ T \int_0^\infty dE \ \Phi_{\nu_{\mu}}(E) A_{\nu_{\mu},\text{eff}}(E)$$

Integrated over full sky (4π) for isotropic flux. T=10 years for example

IceCube+, Science eeat1378 (2018)

Typical application

Inclusive, differential Flux of particles per unit area, angle and time

$$\Phi = \frac{\mathrm{d}\phi}{\mathrm{d}E} = \frac{\mathrm{d}N}{\mathrm{d}E \,\mathrm{d}A \,\mathrm{d}\Omega \,\mathrm{d}t}, \quad [\Phi] = \frac{\mathrm{particles}}{\mathrm{GeV \, s \, sr \, cm}^2}$$

Effective area: converts physical units to event numbers

Flat or volumetric detector (e.g. IceCube)

How many signal or background events do I expect?

$$N_{\text{events}} = 4\pi \ T \int_0^\infty dE \Phi_{\nu_{\mu}}(E) \mathbf{1}_{\nu_{\mu},\text{eff}}(E)$$

Integrated over full sky (4π) for isotropic flux. T=10 years for example

IceCube+, Science eeat1378 (2018)

Atmospheric single muons vs. muon bundles

DESY.

~ multiplicity x energy

Inclusive spectra of (single) muons and neutrinos

- Power-law-like spectra, similar for muons and neutrinos
- (muons: muon neutrinos: electron neutrinos) ~ (1:0.2:0.01) @ 100 GeV
- Low-energy muons suppressed due to decays

Atmospheric depth

(Slant) depth, independent of zenith angle

$$X(h_0) = \int_0^{h_0} dk \ \rho_{air}(\ell)$$

1D transport equation for protons through matter

$$\frac{\mathrm{d}\Phi_{\mathrm{p}}(E,X)}{\mathrm{d}X} = -\frac{\Phi_{\mathrm{p}}(E,X)}{\lambda_{\mathrm{int,p}}(E)} + \int_{E}^{\infty} \mathrm{d}E' \, \frac{\Phi_{\mathrm{p}}(E',X)}{\lambda_{\mathrm{int,p}}(E')} \frac{\mathrm{d}N_{\mathrm{p}\to\mathrm{p}}(E')}{\mathrm{d}E'}$$

"Approximation A":

- $\lambda_{int} \neq f(E)$; constant interaction cross section
- $dN/dx \neq f(E)$; Feynman scaling
- power-law spectra
- No continuous losses
- see book by Gaisser, Engel, Resconi (2016)

Solve via separation of variables with substitution x = E/E'

$$\Phi_{\mathbf{p}}(E,X) = A(X)E^{-\gamma} \longrightarrow \frac{\mathrm{d}A(X)}{\mathrm{d}X} = -\frac{A(X)}{\lambda_{int,p}} \left[1 - \int_0^1 x^{\gamma - 1} \frac{\mathrm{d}N_{p \to p}}{\mathrm{d}x} \right]$$

$$\Phi_{\mathbf{p}}(X) = A(0)e^{-X/\Lambda}E^{-\gamma} \longrightarrow = -\frac{A(X)}{\lambda_{int,p}} [1 - Z_{pp}]$$

$$\frac{\mathrm{d}\Phi_{\mathrm{p}}(E,X)}{\mathrm{d}X} = \frac{-\Phi_{\mathrm{p}}(E,X)}{\lambda_{\mathrm{int,p}}} + \frac{Z_{\mathrm{pp}}\frac{\Phi_{\mathrm{p}}(E,X)}{\lambda_{\mathrm{int,p}}}}{\lambda_{\mathrm{int,p}}}$$
 New transport equation under Appr. A
$$= -\frac{\Phi_{\mathrm{p}}(E,X)}{\lambda_{\mathrm{int,p}}} + S(\mathrm{p} \to \mathrm{p})$$

Cascade equation for pions

sink

source

$$\frac{\mathrm{d}\Phi_{\pi}(E,X)}{\mathrm{d}X} = \frac{-\Phi_{\pi}(E,X)}{\lambda_{\mathrm{int},\pi}} - \frac{\Phi_{\pi}(E,X)}{\lambda_{\mathrm{dec},\pi}}$$

$$+\sum_{\text{hadrons}} S(\mathbf{h} \to \pi, E)$$

Mother/source hadrons for pions (w/o rare processes)

$$\sum_{\text{hadrons}} S(h \to \pi, E) = S(p \to \pi, E) + S(n \to \pi, E) + S(\pi \to \pi, E)$$

$$= Z_{p\pi} \frac{\Phi_{p}(E, X)}{\lambda_{int, n}} + Z_{n\pi} \frac{\Phi_{n}(E, X)}{\lambda_{int, n}} + Z_{\pi\pi} \frac{\Phi_{\pi}(E, X)}{\lambda_{int, n}}$$

Cascade equation for charged pions in a couple (p,n,pion) system

$$\frac{\mathrm{d}\Phi_{\pi}}{\mathrm{d}X} = \boxed{-\frac{\Phi_{\pi}}{\lambda_{\mathrm{int},\pi}} - \frac{\Phi_{\pi}}{\lambda_{\mathrm{dec},\pi}}}$$

$$\frac{\mathrm{d}\Phi_{\pi}}{\mathrm{d}X} = -\frac{\Phi_{\pi}}{\lambda_{\mathrm{int},\pi}} - \frac{\Phi_{\pi}}{\lambda_{\mathrm{dec},\pi}} + Z_{\mathrm{p}\pi} \frac{\Phi_{\mathrm{p}}(E,X)}{\lambda_{\mathrm{int},p}} + Z_{\mathrm{n}\pi} \frac{\Phi_{\mathrm{n}}(E,X)}{\lambda_{\mathrm{int},n}} + Z_{\pi\pi} \frac{\Phi_{\pi}(E,X)}{\lambda_{\mathrm{int},n}}$$

Coupling to cascade equations of other particles

Lepton production channels

conventional

$$p, A + air \to \pi^{\pm}, \pi^{0}, K^{\pm}, K_{S,L}^{0}$$

muons and muon neutrinos

$$\pi^{\pm}, K^{\pm} \to \mu^{\pm} \nu_{\mu}(\bar{\nu}_{\mu})$$

electron neutrinos

$$K^{\pm}, K_L^0 \to [\pi^{\pm}, \pi^0] e^{\pm} \nu_e(\bar{\nu}_e)$$

prompt

$$p, A + air \rightarrow D, \Lambda_C \rightarrow \nu_{\mu}, \nu_e, \mu$$

Subset of dominant decay channels

decay channel	branching ratio (BR)		
$\mu^- \to e^- \bar{\nu}_e \nu_\mu$	100 %		
$\pi^+ o \mu^+ \nu_\mu$	99.9877 %		
$K_{e3}^0: K_L^0 \to \pi^{\pm} e^{\mp} \nu_e$	40.55 %		
$K_{\mu 3}^0: K_L^0 \to \pi^{\pm} \mu^{\mp} \nu_{\mu}$	27.04 %		
$K^+ o \mu^+ \nu_\mu$	63.55 %		
$K_{e3}^+: K^+ \to \pi^0 e^+ \nu_e$	5.07 %		
$K_{\mu 3}^+: K^+ \to \pi^0 \mu^+ \nu_\mu$	3.353 %		
$D^+ \to \overline{K}^0 \mu^+ \nu_\mu$	9.2 %		
$D^0 \to K^- \mu^+ \nu_\mu$	3.3 %		

+ charge conjugates

http://pdg.lbl.gov

Simplest case: 2-body decay

Rest frame $p_T \sim \mathcal{O}(p_z)$ $p_{2,}$, m_2 $oldsymbol{p}_M^* = oldsymbol{0}$ $|{\bm p}_1| = -|{\bm p}_2|$

In analogy to production spectrum weighted moment or Z-factor

Frame boosted in z direction

Example: $M \to \mu \nu$

$$E_M \cdot \frac{m_\mu^2}{M^2} \le E_\mu \le E_M$$
 , $x_i = \frac{E_i}{E_M}$

scaling = independent of the absolute value of E_M

$$0 \le x_{\nu} \le (1 - \frac{m_{\mu}^2}{M^2})$$
 $\frac{m_{\mu}^2}{M^2} \le x_{\mu} \le 1$

$$Z_{M\to l}^D = BR(M\to l) \int_0^1 dx \ x^{\gamma-1} \frac{dN_{M\to l}}{dx}$$

Energy distributions in decays (sampled from PYTHIA 8)

Cascade equations for inclusive muons and neutrinos

$$\frac{\mathrm{d}\Phi_{\pi}}{\mathrm{d}X} = \boxed{-\frac{\Phi_{\pi}}{\lambda_{\mathrm{int},\pi}} - \frac{\Phi_{\pi}}{\lambda_{\mathrm{dec},\pi}}} + \boxed{Z_{\mathrm{p}\pi} \frac{\Phi_{\mathrm{p}}(E,X)}{\lambda_{\mathrm{int},p}} + Z_{\mathrm{n}\pi} \frac{\Phi_{\mathrm{n}}(E,X)}{\lambda_{\mathrm{int},n}}} + Z_{\pi\pi} \frac{\Phi_{\pi}(E,X)}{\lambda_{\mathrm{int},n}}}$$
Coupling to other hadrons

Cascade equation for muons, assuming only charged pions as sources and no continuous losses

$$\frac{\mathrm{d}\Phi_{\mu}}{\mathrm{d}X} = -\frac{\Phi_{\mu}}{\lambda_{\mathrm{dec},\mu}} + S(\pi \to \mu) = -\frac{\Phi_{\mu}}{\lambda_{\mathrm{dec},\mu}} + Z_{\pi \to \mu}^{\mathrm{D}} \frac{\Phi_{\pi}}{\lambda_{\mathrm{dec},\pi}}$$

Same thing for neutrinos except that they don't decay

$$\frac{\mathrm{d}\Phi_{\nu_{\mu}}}{\mathrm{d}X} = S(\mu \to \nu_{\mu}) + S(\mu \to \nu_{\mu}) = Z_{\mu \to \nu_{\mu}}^{\mathrm{D}} \frac{\Phi_{\mu}}{\lambda_{\mathrm{dec},\mu}} + Z_{\pi \to \nu_{\mu}}^{\mathrm{D}} \frac{\Phi_{\pi}}{\lambda_{\mathrm{dec},\pi}}$$

Interactions vs. decays

Critical energy depends on density

Int. length not density dependent. Why?

$$\lambda_{\text{int},h}(E) = \frac{\langle m_{\text{air}} \rangle}{\sigma_{h-\text{air}}^{\text{prod}}(E)}$$

particle	E_{crit} [GeV]	
μ^\pm	1.0	
π^\pm	115	
K_L^0	205	
K^\pm	850	
K_S^0	1.2E+05	
D^{\pm}	4.3E+07	

Interactions vs. decays

Critical energy depends on density

Int. length not density dependent. Why?

$$\lambda_{\text{int},h}(E) = \frac{\langle m_{\text{air}} \rangle}{\sigma_{h-\text{air}}^{\text{prod}}(E)}$$

$$\frac{\mathrm{d}X}{\mathrm{d}\ell} = \rho(\ell) \propto e^{\ell}$$

particle	E_{crit} [GeV]	
μ^\pm	1.0	
π^\pm	115	
K_L^0	205	
K^{\pm}	850	
K_S^0	1.2E+05	
D^{\pm}	4.3E+07	

Analytical solutions

Asymptotic low-energy solution (pion interactions negligible)

$$\Phi_{\nu}(X) \propto E^{-\gamma}$$

Asymptotic high-energy solution (pion decays negligible)

$$\Phi_{\nu}(X) \propto E^{-\gamma-1}$$

Interpolation

$$\frac{\Phi_{\text{low}}\Phi_{\text{high}}}{\Phi_{\text{low}}+\Phi_{\text{high}}}$$

$$\Phi_{\nu}(E) = \frac{\phi_N(E)}{1 - Z_{NN}} \left(\frac{\mathcal{A}_{\pi\nu}}{1 + \mathcal{B}_{\pi\nu} E \cos \theta / \varepsilon_{\pi}} + \frac{\mathcal{A}_{K\nu}}{1 + \mathcal{B}_{K\nu} E \cos \theta / \varepsilon_{K}} \right)$$

Zenith angle: Modified competition of decay and interactions

conventional: from decays of light and strange hadrons (longer lived)

prompt: from decays of short lived hadrons, mostly charm and bottom (no high-energy asymptotics)

Longitudinal evol. of 10 PeV proton interacting in atmosphere

Made with MCEq, hands-on tomorrow

General form of 1D cascade equations in the atmosphere

System of PDE for each particle species $h \leq 62 \times \text{\#E-bins}$ in MCEq) :

$$\frac{\mathrm{d}\Phi_{h}(E,X)}{\mathrm{d}X} = -\frac{\Phi_{h}(E,X)}{\lambda_{\mathrm{int},h}(E)}
-\frac{\Phi_{h}(E,X)}{\lambda_{\mathrm{dec},h}(E,X)}
-\frac{\partial}{\partial E}(\mu(E)\Phi_{h}(E,X))
+\sum_{k} \int_{E}^{\infty} \mathrm{d}E_{k} \frac{\mathrm{d}N_{k(E_{k})\to h(E)}}{\mathrm{d}E} \frac{\Phi_{k}(E_{k},X)}{\lambda_{\mathrm{int},k}(E_{k})}
+\sum_{k} \int_{E}^{\infty} \mathrm{d}E_{k} \frac{\mathrm{d}N_{k(E_{k})\to h(E)}}{\mathrm{d}E} \frac{\Phi_{k}(E_{k},X)}{\lambda_{\mathrm{dec},k}(E_{k},X)}$$

Interactions with air

Decays

Energy losses (radiative)

Re-injection from interactions

Re-injection from decays

DESY.

General form of 1D cascade equations in the atmosphere

System of PDE for each particle species $h \leq 62 \times \text{\#E-bins}$ in MCEq) :

$$-\frac{\partial}{\partial E}(\mu(E)\Phi_h(E,X))$$

$$+ \sum_{k} \int_{E}^{\infty} dE_{k} \frac{dN_{k(E_{k}) \to h(E)}}{dE} \frac{\Phi_{k}(E_{k}, X)}{\lambda_{\text{int}, k}(E_{k})}$$

$$+ \sum_{k} \int_{E}^{\infty} dE_{k} \frac{dN_{k(E_{k}) \to h(E)}}{dE} \frac{\Phi_{k}(E_{k}, X)}{\lambda_{\text{dec}, k}(E_{k}, X)}$$

$$+\sum_{k}\int_{E}^{\infty}\mathrm{d}E_{k}$$

particle physics

Interactions with air

Decays

Energy losses (radiative)

Re-injection from interactions

Re-injection from decays

Reality: non-power-law Cosmic Ray spectra

- · Approx. series of broken power-laws
- Fluxes of mass groups from indirectly from air-showers
- Origin of features is disputed (lecture by P. Blasi). Might come from characteristics of
 - the accelerator itself
 - the transport through interstellar/-galactic medium

 the superposition of different types of accelerators

Contemporary models

Short name	Reference	Description	Valid range [GeV]
НЗа	[13]	three astrophysical populations, broken power laws, five mass groups, heavier composition at ultra-high energies (UHE)	$10^3 - 10^{11} \text{ GeV}$
H4a	[13]	same as H3a but with proton composition at UHE	$10^3 - 10^{11} \text{ GeV}$
GST-3	[44]	three population, broken power-law fit heavier composition be- tween knee and ankle (second knee)	$10^3 - 10^{11} \; \mathrm{GeV}$
GST-4	[44]	like GST-3 but with an fourth extragalactic proton component at UHE	$10^3 - 10^{11} \; \mathrm{GeV}$
$_{ m GH}$	[45]	power-law model with five mass groups, often used in atmospheric neutrino flux calculations below knee energies [12, 46, 11]	< PeV
$_{\mathrm{cHGp}}$	[14, 45, 13]	combination of GH at low energy and H4a above	tens -10^{11} GeV
$_{ m cHGm}$	[14, 45, 13]	like cHGp but with H3a instead of H4a	$tens -10^{11} GeV$
Polygonato	[47]	broken power-law fit, based on renormalization of various cosmic ray measurements up to knee energies	${\rm few}~{\rm TeV}-{\rm PeV}$
ZS	[48, 49]	original model by Zatsepin and Sokolskaya, also including re-fitted parameters by the PAMELA collaboration	$tens \; GeV - PeV$
TIG	[28]	simple broken power law spectrum of nucleons (protons)	TeV - PeV
GSF	add	Global Spline Fit to recent cosmic ray observations with errors	$10 \text{ GeV} - 10^{12} \text{ GeV}$

Models in MCEq/CRFluxModels: https://github.com/afedynitch/CRFluxModels

- Models are constructed from different sets of data
- Systematic uncertainties are rarely taken into account (Polygonato & GSF)

The Global Spline Fit (GSF)

H. Dembinski et al. PoS(ICRC2017)533

More composition data needed

Fitted composition data

4-mass group experiments

H. Dembinski et al. PoS(ICRC2017)533

Required quantity: nucleon flux (not particle or nucleus flux)

AF et al, PoS(ICRC2017)1019

Dominated by proton flux.

Details of sub-leading elements not important.

Superposition model: Nucleus of mass A = A nucleons with E/A

$$\phi_N(E_N) = \sum_{nuclei} A_i^2 \ \phi_i(E \cdot A)$$

Impact on atmospheric neutrino flux

Relation between lepton and cosmic ray energy

DESY.

If energy is not a problem...

Kinematic variables

$$heta = \arctan rac{p_T}{p_z}$$
 $\eta = -\ln \left(an rac{ heta}{2}
ight)$
 $x_{
m lab} = rac{E_{
m secondary}}{E_{
m primary}} pprox rac{p_{z,
m secondary}}{E_{
m primary}}$

For atmospheric leptons

$$p_z \sim {
m TeV} - {
m PeV}$$
 $p_T \sim {
m few} {
m GeV}$
 $heta \sim \mu {
m rad}$

$$x_{\rm lab} > 0.1, \quad \eta \to \infty$$

If energy is not a problem...

Kinematic variables

$$heta = \arctan rac{p_T}{p_z}$$
 $\eta = -\ln \left(an rac{ heta}{2}
ight)$
 $x_{
m lab} = rac{E_{
m secondary}}{E_{
m primary}} pprox rac{p_{z,
m secondary}}{E_{
m primary}}$

For atmospheric leptons

$$p_z \sim {
m TeV} - {
m PeV}$$
 $p_T \sim {
m few} {
m GeV}$
 $heta \sim \mu {
m rad}$

$$x_{\rm lab} > 0.1, \quad \eta \to \infty$$

Relevant particle production phase space

- Atmospheric leptons are sensitive mostly to $x_{lab} > 0.1$
- Reason: steepness of primary CR spectrum

How much of this phase-space is seen by LHCb ("forward experiment")?

Relevant particle production phase space

AF, Riehn, Engel, Gaisser, Stanev arXiv:1806.04140

- Atmospheric leptons are sensitive mostly to $x_{lab} > 0.1$
- Reason: steepness of primary CR spectrum

How much of this phase-space is seen by LHCb ("forward experiment")?

Fixed-target data with large phase space coverage crucial

Feynman scaling

Air-showers & inclusive leptons sensitive to different physics

arXiv:1806.04140

More than just pions and kaons

arXiv:1806.04140

No simple tuning/systematic parameters within one interaction model! Many features related to each other.

DESY.

DESY.

DESY.

arXiv:1806.04140

arXiv:1806.04140

Neutrino properties manifest as pattern in E-θ plane

Neutrino properties manifest as pattern in E-θ plane

$$\theta_{23} = \pi/2$$

$$\Delta m^2_{32}$$
= 2.51 x 10⁻³ eV²

$$P(\nu_{\mu} \to \nu_{\mu}) \approx 1 - \sin^2(2\theta_{23}) \sin^2\left(\Delta m_{32}^2 \frac{L}{4E_{\nu}}\right)$$

Non-standard oscillations with high energy neutrinos

Uncertainties physically correlated and related to hadronic, cosmic ray or atmospheric model

Different hadronic components shape the zenith distribution

Different hadronic components shape the zenith distribution

Why investing time in learning numerical methods

• Sure that your (computational) research won't change, if your code would run instead of 2h/2 min/40 seconds just **2 seconds** or **tens of milli-seconds**?

Why investing time in learning numerical methods

- Sure that your (computational) research won't change, if your code would run instead of 2h/2 min/40 seconds just **2 seconds** or **tens of milli-seconds**?
- Imagine you want to allow (many ~ 5-20) uncertain and degenerate physical parameters to float in a fit to data or vary all to derive systematic uncertainties
 - Not well suited are MC (requires statistics), or some hybrid simulations (require precomputed tables)
 - Often many "local minima" (few seconds or minutes/evaluation too much for direct minimizers or MCMC)
 - Common solution: "effective" methods or approximations instead of fitting or scanning parameters on fine grids
 - Effective methods require additional time to check if approximations are valid, etc.
- Trivially parallel programs (cluster jobs) do not solve this problem: assume, 1000 jobs for hypercube of 3 parameters needed. Adding a 4th parameter requires ~20000 jobs, a 5th one is impossible already
- Numerical methods, <u>if applicable to a physical problem</u>, can accelerate solutions by orders of magnitude

Moores' law or what?

- Some manufacturers present amazing numbers of floating point performance for their hardware products
- Can I use this somehow in my calculations?
- Often you can not, if you write:

```
for (int i=0; i < get_upper_idx(); ++i){
    ...
    x[i] = x[i]*x[i] + y[i,i];
    ...
}</pre>
```

PERFORMANCE SPECIFICATION FOR NVIDIA TESLA P100 ACCELERATORS

	P100 for PCle-Based Servers
Double-Precision Performance	4.7 TeraFLOPS
Single-Precision Performance	9.3 TeraFLOPS
Half-Precision Performance	18.7 TeraFLOPS

```
int IMAX = 100000;

for (int i=0; i < IMAX; ++i){
    ...
    x[i] = calculate_something();
    if (x[i] < 5)
        break;
    else ...
}</pre>
```

Moores' law or what?

- Some manufacturers present amazing numbers of floating point performance for their hardware products
- Can I use this somehow in my calculations?
- Often you can not, if you write:

Compiler doesn't know N-iterations during compile-time

```
for (int i=0; i < get_upper_idx(); ++i){
    ...
    x[i] = x[i]*x[i] + y[i,i];
    ...
}</pre>
```

PERFORMANCE SPECIFICATION FOR NVIDIA TESLA P100 ACCELERATORS

	P100 for PCle-Based Servers
Double-Precision Performance	4.7 TeraFLOPS
Single-Precision Performance	9.3 TeraFLOPS
Half-Precision Performance	18.7 TeraFLOPS

Parallelization where you might don't expect it

Transport/cascade equations require many convolutions at each step

$$\frac{\mathrm{d}\Phi_{h}(E,X)}{\mathrm{d}X} = \dots$$

$$+ \sum_{k} \int_{E}^{\infty} \mathrm{d}E_{k} \frac{\mathrm{d}N_{k(E_{k}) \to h(E)}}{\mathrm{d}E} \frac{\Phi_{k}(E_{k},X)}{\lambda_{\mathrm{int},k}(E_{k})}$$

$$+ \sum_{k} \int_{E}^{\infty} \mathrm{d}E_{k} \frac{\mathrm{d}N_{k(E_{k}) \to h(E)}}{\mathrm{d}E} \frac{\Phi_{k}(E_{k},X)}{\lambda_{\mathrm{dec},k}(E_{k},X)}$$

Matrix expression for convolution using midpoint rule

$$c(E_i) = \int_{E_i}^{\infty} dE' b(E_i, E') a(E')$$

$$\approx \sum_{j=E_i}^{E_N} \Delta E'_j b(E_i, E'_j) a(E'_j) = \sum_j B_{ij} a_j$$

Then, for any dim. of c $ec{c}=\mathbf{B} imesec{a}$

$$\vec{c} = \mathbf{B} \times \vec{a}$$

Well, matrices ... sure ... I write loops ...obviously

Vectorization

Vectorization

Vectorization

> Features you might get:

- 2-8 Float operations per clock instead of 1
- Addition + multiplication in 1 clock instead of 2
- Coalesced memory access (higher RAM/Cache FPU bandwidth)
- SMP (Multicore), easy GPU, packed math, ...

Vectorization

- > Features you might get:
 - 2-8 Float operations per clock instead of 1
 - Addition + multiplication in 1 clock instead of 2
 - Coalesced memory access (higher RAM/Cache FPU bandwidth)
 - SMP (Multicore), easy GPU, packed math, ...

- We are not computer scientist and we don't want to
 - spend a significant fraction of life-time to study all these new technologies/APIs
 - Look at profiler/optimization reports each time we wrote a line of code
- However, it is much easier to accelerate just matrix expressions (other techniques often not worth the additional dev time)
- Many packages available: MKL, Magma, CUBLAS/cuSparse

Vectorization

- > Features you might get:
 - 2-8 Float operations per clock instead of 1
 - Addition + multiplication in 1 clock instead of 2
 - Coalesced memory access (higher RAM/Cache FPU bandwidth)
 - SMP (Multicore), easy GPU, packed math, ...

- We are not computer scientist and we don't want to
 - spend a significant fraction of life-time to study all these new technologies/APIs
 - Look at profiler/optimization reports each time we wrote a line of code
- However, it is much easier to accelerate just matrix expressions (other techniques often not worth the additional dev time)
- Many packages available: MKL, Magma, CUBLAS/cuSparse

It's all just marketing!

Some case...

Should be pretty fast, right?

```
SUBROUTINE MATMULOPT(M, N, DATA, VEC, RES)

INTEGER M, N, I, J

DOUBLE PRECISION DATA(10000,10000)

DOUBLE PRECISION VEC(10000), RES(10000)

'intent(out) :: RES

DO J=1,N

DO I=1,M

RES(J) = DATA(I,J)*VEC(I) + RES(J)

END DO

END DO
```

Some case...

Should be pretty fast, right?

```
SUBROUTINE MATMULOPT(M, N, DATA, VEC, RES)
INTEGER M, N, I, J
DOUBLE PRECISION DATA(10000,10000)
DOUBLE PRECISION VEC(10000), RES(10000)

'intent(out) :: RES

DO J=1,N
DO I=1,M
RES(J) = DATA(I,J)*VEC(I) + RES(J)
END DO
END DO
```

- > This example is brute force
- > Run on a tablet, workstation typically higher gain
- Linear algebra has many interesting features (sparse matrices, efficient solvers, etc.)

END

```
In [3]: m,n, data, vec = 10000,10000, np.random.random((10000,10000)), np.random.random(10000)
In [4]: dataf = np.asfortranarray(data)
In [5]: vecf = np.asfortranarray(vec)
In [6]: %timeit fortrantest.matmulopt(m,n,dataf,vecf)
10 loops, best of 3: 130 ms per loop
In [7]: %timeit np.dot(data.T, vec)
10 loops, best of 3: 35.4 ms per loop
```

gfortran-7 -O3 vs. numpy linked to Intel MKL

Some case...

Should be pretty fast, right?

```
SUBROUTINE MATMULOPT(M, N, DATA, VEC, RES)

INTEGER M, N, I, J

DOUBLE PRECISION DATA(10000,10000)

DOUBLE PRECISION VEC(10000), RES(10000)

intent(out) :: RES

DO J=1,N

DO I=1,M

RES(J) = DATA(I,J)*VEC(I) + RES(J)

END DO

END DO
```

- > This example is brute force
- > Run on a tablet, workstation typically higher gain
- Linear algebra has many interesting features (sparse matrices, efficient solvers, etc.)

```
In [3]: m,n, data, vec = 10000,10000, np.ra
but my "matrices" are neither random, nor dense!

In [4]: dataf = np.asfortranarray(data)

In [5]: vecf = np.asfortranarray(vec)

In [6]: %timeit fortrantest.matmulopt(m,n,dataf,vecf)
10 loops, best of 3: 130 ms per loop

In [7]: %timeit np.dot(data.T, vec)
10 loops, best of 3: 35.4 ms per loop
```

Well,

gfortran-7 -O3 vs. numpy linked to Intel MKL

END

More realistic case: propagation coupling matrix

> IDs: A*100 + Z

Each element represents an injection rate

- Interacting elements are rows
- > Ejected elements are columns

All possible disintegration channels of iron(ish) isotopes (1n, 2n, 1n1p emissions etc.)

More realistic case: propagation coupling matrix

General remarks

- Radiation and particle transport are often sparse problems
- Calls to special functions (like pow(x,y)) are very expensive, interpolation is expensive,....
- Formulating the kernel of you problem in algebraic expressions gives you a lot of performance for free, vectorization doesn't simply become marketing or impossible to afford due to dev time
- You can use GPUs, multi-core, etc., and if you need performance, you probably should, since CPU's won't accelerate much in the next decade
- If using vectorization, think deeply about required precision. Single or half precision may double or quadruple FLOPs on modern hardware

PoS and E

A. Fedynitch, R. Engel, T. K. Gaisser, F. Riehn and S. Todor PoS ICRC 2015, 1129 (2015), EPJ Web Conf. 99, 08001 (2015) and EPJ Web Conf. 116, 11010 (2016)

MCEq: Matrix Cascade Equations

$$\frac{\mathrm{d}\Phi_{h}(E,X)}{\mathrm{d}X} = -\frac{\Phi_{h}(E,X)}{\lambda_{\mathrm{int},h}(E)} - \frac{\Phi_{h}(E,X)}{\lambda_{\mathrm{dec},h}(E,X)} - \frac{\partial}{\partial E}(\mu(E)\Phi_{h}(E,X)) + \sum_{\ell} \int_{E}^{\infty} \mathrm{d}E_{\ell} \, \frac{\mathrm{d}N_{\ell(E_{\ell})\to h(E)}}{\mathrm{d}E} \, \frac{\Phi_{\ell}(E_{\ell},X)}{\lambda_{\mathrm{int},l}(E_{\ell})} + \sum_{\ell} \int_{E}^{\infty} \mathrm{d}E_{\ell} \, \frac{\mathrm{d}N_{\ell(E_{\ell})\to h(E)}}{\mathrm{d}E} \, \frac{\Phi_{\ell}(E_{\ell},X)}{\lambda_{\mathrm{dec},l}(E_{\ell},X)}$$

State (or flux) vector

$$\vec{\Phi} = \begin{pmatrix} \vec{\Phi}^{\mathbf{p}} & \vec{\Phi}^{\mathbf{n}} & \vec{\Phi}^{\pi^{+}} & \cdots & \vec{\Phi}^{\bar{\nu}_{\mu}} & \cdots \end{pmatrix}^{T}$$

$$\vec{\Phi}^{\mathbf{p}} = \begin{pmatrix} \Phi_{E_{0}}^{\mathbf{p}} & \Phi_{E_{1}}^{\mathbf{p}} & \cdots & \Phi_{E_{N}}^{\mathbf{p}} \end{pmatrix}^{T}$$

"Matrix form"

$$\frac{\mathrm{d}}{\mathrm{d}X}\vec{\Phi} = -\vec{\nabla}_E(\mathrm{diag}(\vec{\mu})\vec{\Phi}) + (-\mathbf{1} + \mathbf{C})\mathbf{\Lambda}_{\mathrm{int}}\vec{\Phi} + \frac{1}{\rho(X)}(-\mathbf{1} + \mathbf{D})\mathbf{\Lambda}_{\mathrm{dec}}\vec{\Phi}$$

Sparse matrix structure

Short resonances and stiffness

incoming hadron interaction $\rho, \omega, \eta, \dots$ $X_{n-1} \qquad X_n \qquad X_{n+1} \qquad X_{n+1} \qquad X_{n+2}$ integration steps

Eigenvalues of matrix equation

Resonance approximation: integrate out fast decays

$$\lambda_{dec} < t_{mix} \lambda_{int}$$
 $ec{\Phi}^{\omega} = ig(\Phi^{\omega}_{E_0} & \cdots & \Phi^{\omega}_{E_i} ig) \ & \equiv 0 \ & ext{treat as} \ & ext{resonance}$

$$\lambda_{dec} \geq t_{mix} \lambda_{int}$$
 $\Phi^{\omega}_{E_{i+1}} \cdot \cdot \cdot \cdot \Phi^{\omega}_{E_{N}} ig)^{T}$ transport as particle

Fastest eigenvalue controls integration step

General solutions for linear ODE systems

$$\vec{\Phi} = \sum_{i=1}^{n} c_i e^{\lambda_i^* X} \vec{\Psi}_i$$

Stability criterion for explicit integrators

$$\Delta X < \frac{2}{\lambda_{\max}^*}$$

MCEq vs (thinned) CORSIKA calculation in 1D

Inclusive muon neutrino flux ratio CORSIKA/MCEQ. QGSJET-II-03 + H3a.

How do you actually compute inclusive fluxes with CORSIKA?

> MIT licensed @

https://github.com/afedynitch/MCEq

Inclusive fluxes with CORSIKA

For various "inputs"

primary spectrum, zenith angle, composition

simulate "average" air-shower

score energy spectrum of particles in virtual detector

Obtain 1D Yield/Response function

 $\mathcal{Y}(E_0, Z_0, \theta, M, \dots)$

Convolve yields with primary spectrum

Low energies: limitation of 1D approach

A subset of 3D calculations

[1] G. Barr, P. Lipari, S. Robbins, and T. Stanev, International Cosmic Ray Conference 3, 1411 (2003).

[2] M. Honda, T. Kajita, K. Kasahara, and S. Midorikawa, Phys. Rev. D 83, (2011).

[3] M. Honda, T. Kajita, K. Kasahara, S. Midorikawa, and T. Sanuki, Phys. Rev. D 75, (2007).

[4] [1] G. Battistoni, A. Ferrari, P. Lipari, T. Montaruli, P. R. Sala, and T. Rancati, Astroparticle Physics **12**, 315 (1999).

[5] J. Wentz, I. M. Brancus, A. Bercuci, D. Heck, J. Oehlschläger, H. Rebel, and B. Vulpescu, Phys. Rev. D 67, 073020 (2003).

3D needed < ~ 5 - 10 GeV

Low energies: limitation of 1D approach

A subset of 3D calculations

- [1] G. Barr, P. Lipari, S. Robbins, and T. Stanev, International Cosmic Ray Conference 3, 1411 (2003).
- [2] M. Honda, T. Kajita, K. Kasahara, and S. Midorikawa, Phys. Rev. D 83, (2011).
- [3] M. Honda, T. Kajita, K. Kasahara, S. Midorikawa, and T. Sanuki, Phys. Rev. D 75, (2007).
- [4] [1] G. Battistoni, A. Ferrari, P. Lipari, T. Montaruli, P. R. Sala, and T. Rancati, Astroparticle Physics **12**, 315 (1999).
- [5] J. Wentz, I. M. Brancus, A. Bercuci, D. Heck, J. Oehlschläger, H. Rebel, and B. Vulpescu, Phys. Rev. D 67, 073020 (2003).

3D needed < ~ 5 - 10 GeV

Impact of hadronic interaction model I

- Inclusive muons "still" uncertain
- Hard to get muon charge ratio right
- Hadronic uncertainties larger than measurement errors

Post-LHC models indeed improve the situation

arXiv:1806.04140

Calculation method more important for angular distributions

