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Where do cosmic rays come from?
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e Spectrum of cosmic-ray nuclei, coming (above few GeV) from
beyond the solar system, extend over >10 decades in E

* Presumably of galactic origin up to ~“few PeV ("the Knee")
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Charged cosmic rays, deviated by magnetic fields in the galaxy, pr{)vide no clue of their
acceleration Tocation (except at extremely high E) )
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= gamma rays are good tracers of particle acceleration
(so are v's, but they are much harder to detect)



High-energy particles + target (matter, radiation or B field) =
production of high-energy gamma rays

CR interaction with
inter-stellar medium
particles

P

bremmstrahlung

O/\/\/\/}/\/\.’

Nucleo e”

inverse
Compton

curvature
radiation

—> gamma rays will almost certainly be a by-product of the
acceleration of charged particles
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Cosmic microwave background, ~3 mm
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X-ray and y-ray astronomy

keV MeV GeV
| | | | | | |

< = > -
Focusing instruments  Coded masks, collimators Pair conversion telescopes
(i.e. INTEGRAL) < > (until ~300 GeV)
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9-year Fermi-LAT skymap, >100 MeV

NASA/DOE/Fermi LAT Collaboration

Pulsars
 Diffuse emission + discrete sources ® PWN/SNR

e As of 3FGL (4-year source catalog), Blazars

3033 sources Other

Unassociated




Fermi-LAT 2FHL catalog AplJS 222 (2016)

50 GeV -2 TeV 4 | , 6.7 years of data
50 GeV -2 TeV

360 sources 6.1x10% photons

0.001 0.005 0.013 0.029 0.06 0.12 0.25 0.5 1 2 4

Fig. 1.— Adaptively smoothed count map in the 50 GeV-2TeV band represented in Galactic coordinates
and Hammer-Aitoff projection. The image has been smoothed with a Gaussian kernel whose size was varied
to achieve a minimum signal-to-noise ratio under the kernel of 2. The color scale is logarithmic and the units
are counts per (0.1deg)?.
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Fermi-LAT 2FHL catalog AplJS 222 (2016)

—_ W ——

50 GeV —2 TeV P e O A —— 6.7 years of data
360 sources : 6.1x10* photons

@

+ BL Lacs Unc. Blazars v  Unassociated
o FSRQs s  Others o Extended

* CR accelerators are likely among these sources — do they
reach high-enough energies? Where are the PeVatrons?
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Limitations of space y-ray telescopes in
the VHE range (>100 GeV)

e Small effective area results in extremely low
detection rates at E > 100 GeV, even for strong sources :

Dcrap E-100Gev = 100 photons/m?/year

e Calorimeter depth < 10 radiation lengths (current instruments)
= showers from VHE gammas leak out of the calorimeter

Fortunately, the Earth’s atmosphere is thin enough so that the
effects of the absorption of a VHE y-ray are detectable from the

ground
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Simulated gamma
50 GeV

Fabian Schmidt, Leeds university
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Aharonian+, Rep. Prog. Phys. 71 (2008)
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Shower front sampling technique

e HAWC: High-altitude (4100 m a.s.l.) +
dense sampling — targets ~“TeV showers
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* Auger (surface detector): sparse,
large footprint — targets ultra-
high energy showers (107 eV )
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How can we detect showers in which
few or no particles reach the ground?
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Cherenkov Radiation

 Emitted whenever a charged particle traverses a medium at a
speed larger than that of light in the medium

 The radiation results from the reorientation of electric dipoles

induced by the charge in the medium. When v > c/n the
contributions from different points of the trajectory arrive in

phase at the observer as a narrow light pulse

v<c/n v >c/n
@) oo O

000000085 La952e5c0
O000p00 O 0% Q@@OOO
O A D @OO 00 &8 Q@ O
0908519957 O 90 O
0O oe2/ce 00 0O 0S92 P00
000000008 FOTB00 000
OQOOQS)OOO Oo%ooooOoo
000 O O 00

0%%d ©°0 50°90% ©

ISAPP school @ CERN, November 2018 A. Moralejo, gamma observations with IACTs 15



Cherenkov radiation in the atmosphere

* In 1948, P.M.S. Blackett suggested that secondary CR’ s should
produce Cherenkov radiation which would account for a fraction

104 of the total night sky light

* In 1963 Galbraith and Jelley recorded for the first time Cherenkov
light pulses from air showers, and proposed their use in gamma-
ray astronomy

ER.E., Harwell. The bank of three-foot

e el ol o e e Quarterly Journal of the Royal Astronomical Society, 4 (1963)
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Cherenkov radiation in the atmosphere

Air density: P(h) =pp-€ " p,=7.1km
Refractive index:

h
n=14+m=1+m- € ™ , with np=2.9-10"*

Threshold for Cherenkov emission:

. MeC M C 0.511 MeV = 35 MV at A
= — ~/ ~ eV a
o \/ 1—7532, V1 —n—2 2 my, ’

Cherenkov angle for f=1:

1 1
coS Oy = — =
n 1+mn,
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Cherenkov radiation in the atmosphere

RC.' Distance from particle trajectory at which the C-photons hit the ground

R. = (h — hops) - tanby,q,  for f=1

2200 m a.s.l. At sea level
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(note: angular distribution of e* due to multiple scattering also matters!)
Hump position depends on observation altitude (but not on E,)
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Lateral distribution of C-light

If e* shower extinguishes before reaching Else, C-light density is maximum
observation level (E< a few TeV) : Plateau at shower core and drops
up to the hump, then fast drop exponentially with R
% [ sammdrayE 0’ F E =207V, 00
~ - , N = ’ =
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- Rc(m)
-2— .
10 R Note: for a given E,, a y-ray
0 200 400 600 .
R (m) produces far more light thana p

D. Sobczynska, CORSIKA simulations

Good correlation of the light density (given R) with the gamma-ray energy =

calorimetric measurement
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Effect of geomagnetic field
Light pool, B=0 vs. B=30.8 uT (La Palma)

photons per m?2in 290 - 900 nm range photons per m?in 290 - 900 nm range
50 GeV gammas (average of 100 events) 50 GeV gammas (average of 100 events)
uiYd Teide, no B Teide with B

200

-200

-400

CORSIKA simulations T magnetic N

-400 -200 0 200 400 -400 -200 0 200 400

e B-field separates + and — charges in the E-W direction
 Shown above is the average effect — a given pool can be very E-W asymmetric
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Attenuation of C-light in the atmosphere

Three relevant processes:

e Mie scattering (by dust particles)

e Rayleigh scattering (by air molecules)

e Absorption by Ozone (but EAS develops mostly below O, layer)
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Time structure of the C-light front

Wavefronts of S50 GeV Showers
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* Cherenkov pulse duration O(ns) = fast photodetectors (PMTs or SiPMS)
* |f placed at the focal plane of an imaging optical system (e.g. a parabollic
mirror) allows to obtain an image of the EAS
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Imaging Atmospheric
Cherenkov Telescope
(IACT)

Huge effective area &
>




IACT_Earray

gamma-ray direction

-

Multiple views of the same shower

= stereoscopic reconstruction




Simplest IACT event reconstruction

— Keep only pixels significantly above the background light fluctuations

— Calculate a small set of parameters describing the image: Size (total # of p.e.),
main axis, Width, Length (2"¥ order moments - "Hillas parameters"), time

gradient along major axis...

Image parametrization §

8 AM. Hillas (1932 - 2017)

Stereoscopic reconstruction

& e

vioralejo, gamma observations with IACTs

CT1 (x1.yl, z1) CT2 (x2,y2, z2)
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Monte Carlo simulations

No test-beam to calibrate the atmosphere + IACTs system
— key role of MC of shower development and detector response

 needed to correlate the observed quantities with the properties of the

primary gamma (or cosmic ray), e.g. its energy

e = MC allows to calculate the effective

area of the IACT array (vs. Energy,

Zenith...)

= Convert the observed gamma-ray
rates into an estimate of the source flux
(vs. energy and/or time)
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MC parameters need to be tuned to match the
telescopes performance = use muon ring events,
check Crab Nebula (standard candle) observations...

A. Moralejo, gamma observations with IACTs
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Suppression of charged CR background

f proton

Larger transverse
momentum in

hadronic interactions
=> wider showers

f 4
Credit: Fabian Schﬁwidt, Leeds university

ISAPP school @ CERN, November 2018

. gamma

A. Moralejo, gamma observations with IACTs

The isotropic flux of
CRs

Based on the different
lateral and longitudinal
development of
gamma- and hadron-
initiated showers

=> different
distributions of
image parameters for
gammas & CRs

27



Suppression of charged CR background

* background suppression .1
factor 100 - 1000

Cosmic Rays

* Much better thanany  o.0s
other ground-based
gamma-ray detection 0
technique (because of
handle on shower
development)

0.3
- —+  Real Dam
- MC Simularions
0.25 |—
- Gamma Rays
0.2 - JL
0.15 |- Uy
- T

HEGRA CT system, G. Rowell A&A 410

-0.05 oo e v b b b by
0.5 1 1.5 2 2.5 3

Mean scaled image width: scaled to the expectation for
gammas at given impact parameter & image Size)

Q
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Suppression of charged CR background

* |Image parameters (from different telescopes) can be combined by
multivariate classification methods (like Random Forest, or BDTs) to derive
a single cut parameter (dubbed hadronness below)

e The algorithms are trained using MC-simulated gammas, and real (or MC)
background events
Albert et al, NIM A 588

500—

adjustable threshold for accepting e\j/ents | e There are also more
’ sophisticated IACT analysis
methods than the classical

one here described:
300

e see e.g. Parsons & Hinton,
Astroparticle Physics 56
(2014) — maximum likelihood
method using MC library of
image templates

100

0 01 02 03 04 05 06 07 08 09 1
hadronness
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Higher-level IACT analysis
Berge+ A&A 466 (2007)

Event Map Event Map
-29 29

-30 y
Observation -~

Positions < |

-31 .
Observation’ -~

Positions

22h02m 21h58m 21h55m 22h02m 21h58m 21h55m

e After CR suppresion cuts we are left with a list of events (t, E,.., RA..., O,ec
both VHE gammas and gamma-like background (e*-initiated showers, EM
subshowers from CR-initiated showers) — limit of IACTs in their core energy range

) with

e Aperture photometry (on / off) or background modelling used to estimate gamma-
ray fluxes; translated into spectra & light curves using MC-generated instrument
response functions.
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ISAPP school @ CERN, November 2018

|ACT, a few milestones

1968: inauguration of the
Whipple 10-m telescope

1989: Whipple reports first
y-ray source detection: the
Crab Nebula

1997-2002: HEGRA array.
first successful application
of stereoscopy

2002 - today: second-
generation of IACT arrays
(HESS, MAGIC, VERITAS)

o e

23, 1968, Mt. Hopkins (Arizona)
pple 10-m telescope inauguration
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Current generation of IACT arrays

L o~

* Energy threshold E, = ~25 to 100 GeV
e Point-source integral flux sensitivity: 0.5 to 1.0 % of the Crab Nebula flux in

50 h (above 200 GeV, >100 times more sensitive than Fermi-LAT in one year)
e Modest field of view (few degrees) = pointing instruments

e Angular resolution <0.1° Energy resolution = 15%
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The TeV sky 1995

+90
Mrk 421

+180

Detected by the Whipple telescope in Arizona
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The TeV sky 2018

http://tevcat.uchicago.edu

+90

® Extended TeV Halo, PWN ® e S AP
'Starburst o

|80 -180
@ HBL, IBL, FRI, Blazar, FSRQ, \ /

LBL, AGN (unknown type) -
@ Globular Cluster, Star Forming e C
Region, uQuasar, Cat. Var.,

Massive Star Cluster, BIN, BL Lac - - ()
(class unclear), WR

@ shell, SNR/Molec. Cloud,
Composite SNR, Superbubble

©DARK, UNID, Other .90
@ Binary, XRB, PSR, Gamma BIN +5.0°

>200 sources as of +30.0° MW‘— -30.0°

April' 18 H
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The TeV sky as of April 2018

source: http://tevcat.uchicago.edu

Extragalactic:
e 74 AGN (mostly blazars)
e 2 starburst galaxies

Galactic:
e 37 Pulsar Wind Nebulae

e 28 shell-type SNR, composite
SNR, SNR/Molecular cloud

* 61 Unidentified .
“ Binaries  “ pulsars
* 6 binaries  SBG

“ AGN “ PWN
~ SNR “ UNID

e 2 pulsars
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The H.E.S.S. galactic plane survey

ﬁﬁﬁﬁﬁ - | =-110 to +70°
b= -5to+5°

2673 h of good-
quality data
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e Most identified sources are SNRs
* Maps made publicly available in FITS format
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SNR RX J1713-3946 seen by H.E.S.S.

First resolved SNR
shell at TeV energies

Spectrum extends to
>30 TeV

Implies particle
acceleration at least
up to 100 TeV

— Combined fit

2003
o 2004
A 2005

10710

O+

10"

10"

E2 x dN/dE (TeV cmi> s
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10™

1 10
Energy ( TeV)
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2003 - 2005 astro-ph/0611813v1

-39

PSF

color scale: >TeV, HESS
Contours: 1 -3 keV, ASCA
17h15m 17h10m

A. Moralejo, gamma observations with IACTs
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H.E.S.S. RX J1713-3946

protons or electrons?

. Tanaka+, ApJ 685 (2008 |
"hadronic model" | P ( ) 2 clecton

s . leptonic model  populations
10- T T T
Suzaku XIS Suzaku XIS
-10 |B=200 4G

‘._'10 Suzaku HXD H.IE.S.S. — 10"t B=14 P-G Suzaku HXD H.E.S.S.
. 1
¢ EGRET o ' EGRET V
Y E o1t
0 ) 10 3
2 g
— Synchrotron 2 Synchrotron
w 10—12 - y
S W 10—12
~ O
2 >
s G Ny
W= L aren oW enley L ST b

10 W o-13

10~ 14 L~ ' bl - . . 1

s 0 5 10 15 10~ s 0 5 10 15
Log(E/eV) Log(E/eV)

Situation unclear before Fermi-LAT

* No doubt about the synchrotron origin of the X-rays
* Gamma rays might be either of hadronic or leptonic origin
 if leptonic, no proof of hadronic CR acceleration
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H.E.S.S. RX J1713-3946

protons or electrons?

Abdo+ (Fermi-LAT coll.), arXiv:1103.5727v1, ApJ, 734, 28 (2011)
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Leptonic models apparently favored by Fermi-LAT observations, but...

ISAPP school @ CERN, November 2018
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e Also: first-time evidence of VHE particles beyond the X-ray shell

ISAPP school @ CERN, November 2018

H.E.S.S. RX J1713-3946

protons or electrons?

H.E.S.S. coII A&A 612 (2018)

Hadronic model — Full remnant ! ! T ' ™
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Hadronic scenario still plausible
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Fermi-LAT: detection of the "pion bump"

 SNRs IC 443 and W44 observed by Fermi-LAT from ~ 0.1 to 50 GeV

Science 339 (2013) arXiv:1302.3307v1
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* Fast-rising SED below 0.2 GeV is a characteristic signature of n® decay

* Hadronic models fit significantly better than leptonic models = evidence
of proton acceleration at these SNRs — but to what energies?

 |ACTs needed to probe the highest energies — search for PeVatrons
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Cas-A: MAGIC +Fermi-LAT spectrum

[erg cm? 57|

dN
dE dA dt

2

 Remnant of a core-
collapse SN (330 yr. old)

e Shell has 5 arcmin &, not
resolved in gamma band

e Clear cut-off visible in the
VHE spectrum at ~3.5 TeV

MAGIC coll., MNRAS 472 (2017)
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Cas-A, broadband spectrum: not a PeVatron

Hadronic model favoured, but cut-off in gamma spectrum suggests cut-off at

~12 TeV in parent proton spectrum (i.e., well below the knee)
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Any promising PeVatron candidates?

HESS 11641 463 H.E.S.S. CO|| ApJL 794 (2014)

 Some galactic sources show a hard "} prpoolisonsy 1 off OMB photons

spectrum and no hint of a cut-off 1072

 Example: HESS J1641 (PWN or |
unresolved shell SNR)

104 L

10-15 B

TevV'em?s!

1018 |

* Next generation IACT (CTA) needed | HESSJ1641-463_.;.“

. . . Cutoff 100 TeV -+-eereee HESS J1641-463 +—e—i
for establishing maximum E reached o[ clfigeotey = NI cutereio00 Tov —
oo L eSS 787800 — | wessi7iotdede
1 10 100 1 10 100
TeVv TeVv
. . . S0
* Another Pevatron candidate is the galactic t | HESS coll Nature 516 (2016)
center region ¢
 Assuming hadronic origin of the diffuse gamma  @*"

emission, spectrum implies a cutoff >0.4 PeV
at 95% C.L.

ccccc

s - Model: Diffuse emission EZ,,- ™" = 0.4 PeV
-1
1077 [ HESS J1745-290

1021 et
. [] Diffuse emission (x 10) ’f |
| —— Model (best fit): Diffuse emission } +—v—
— - Model: Diffuse emission E;,." = 2.9 PeV
" --- Model: Diffuse emission E""" “=0.6 PeV
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lceCube-170922A: dawn of VHE neutrino astronomy?

* Detection of v's would be a smoking gun evidence of hadron acceleration
* |ceCube-170922A alert, ~290 TeV neutrino with 56.5% signalness
* Direction compatible with flaring blazar TXS 0506+056 reported by Fermi-LAT

* Follow-up observations by MAGIC show gamma spectrum extends to ~400
GeV (source not previously known in VHE).

* Post-trial significance of coincidence ~3 ¢

A original GCN Notice Fri 22 Sep 17 20:55:13 UT B
refined best-fit direction IC170922A
=== |C170922A 50% - area: 0.15 square degrees
o0 = |C170922A 90% - area: 0.97 square degrees
i
o e o)
N g ;.
— « 3 8
— 9 S o @
O & Q s L
[= (&) c z
M = .
5} = o Red
) 7] 5 5] »
Q - < e Q
< S )
Q) <
Q w =
—
O
m PKS 0502+04p — PKS 0502+04p
MAGIC PSF
78.4° 78.0° 77.6° 77.2° 76,8° 76.4° 78.4° 78.,0° 77.6° 77.2° 76.8° 76.4°

Right Ascension Right Ascension

* Looking on archival data, IceCube reported another excess from the same direction
(Sept 2014 — March 2015, 3.5 o post-trials) - but with no associated Y activity
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The future: the Cherenkov Telescope Array
the next-generation VHE observatory

S

e aﬁg Ima

cherenkov
telescope
array

South site @ ESO-Paranal
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cherenkov

i The CTA concept

Order of magnitude improvement in sensmwty w.r.t. current VHE observatories

Mid-Size Telescopes (MSTs)
mCrab sensmvrty in 0.1 - 10 TeV

ISAPP school @ CERN, November 2018

Small-Size Telescopes (SSTsS)
~10 km? effective area at
multi-TeV energies (South array only)

“Large-Size Telescopes (LSTs) energy -
threshold of O(10) GeV: :

: Moralejo gamma observations with IACTs



cherenkov
telescope

CTA-LST1 in La Palma
inaugurated Oct 10", 2018
First CTA telescope on-site
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Back-up



Limitations of space y-ray telescopes in
the VHE range (>100 GeV)

Realistic MC simulation of the
materialization of a 1 GeV y-ray in a structure  shower contained in the

like that of LAT (or EGRET)

Incoming 1 Ge¥
gamma ray

10% of energy
escapes

ISAPP school @ CERN, November 2018

Fermi LAT, mean fraction of the

calorimeter vs. incidence angle

|Mean fraction of the shower contained in the calorimeter |
i dul Y
ingle jt ule % 10
V]
1T
Tracking
section
102
Calorimeter
section
10
P. FI eu 0 . 10 20 30 40 50 €0 70 80
ry R. Terrier 0 deg
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Extensive Air Showers (EAS)

Electromagnetic (EM)

Y primario

ISAPP school @ CERN, November 2018

Hadronic

Rayo cdsmico (p, alfa,...)

Niicleo atmosférico
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1  muons Simulated proton
100 GeV
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Fabian Schmidt, Leeds university

A. Moralejo, gamma observations with IACTs
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Hadron-initiated showers

e Muons, resulting mainly from charged pions, have a half-life
of 2.2 us in their own reference frame = many arrive at the
ground before decaying (and account for 75% of all secondary

CRs detected at sea level)

e Neutral pions decay (most often) in 2 v, resulting in EM
subshowers at some angle w.r.t. the shower axis (carrying in
average 1/3 of E,)

e Detailed study of extensive air showers requires a full Monte
Carlo simulation (e.g. Corsika)



Shower front sampling technique

Sketch of shower development

 Both in EM & hadronic showers
secondary particles form roughly a
disk-shaped front (or very flat cone)
of few ns thickness, traveling at
speed = c towards the ground

e Extensive air showers can be
detected using arrays of particle
detectors on the ground (e.g. Auger,
HAWC)

e Site altitude determines the energy

. . . . . threshold

ISAPP school @ CERN, November 2018
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Simulated 10 TeV

e =W or gol
T =8

gamma shower

Lateral distribution:
NKG formula

10310 (NS) =.5.53
s =0.93

Fabian Schmidt, Leeds university
http://www.ast.leeds.ac.uk/~fs/showerimages.html
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Shower front sampling technique: HAWC

High-altitude and dense sampling - detect as many particles as possible

www.hawc-observatory.org

* 4100 m a.s.l. in Sierra Negra, México

* |[nstantaneous FoV =2sr
* Cansurvey 40% of the sky every year
e Sensitivity (1 yr.): 5% Crab above 2 TeV

-

i

—150 —100 —50 ] 00 P
X (m) -

¥ {m)
]

(a) HAWC tank layout. (b} Water Cherenkov Detection Principle.
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Intensity of atmospheric C-light

An electron traveling at speed £ in a medium of refractive
index n emits, between wavelengths A, and A,, per unit length:

AN _ (11N (,_ 1
dzx - )\1 )\2 52712

For A, =300 nm, A, =450 nm, in air, =1,
exponential atmosphere p profile:

dN _h t
=l ~30-¢ o photons /m =|30- — photons/m
dx ' to '

t: atmospheric depth, ¢,=1024 g/cm?




Effect of Zenith angle

Low ZA: smaller light pool, but higher photon
density for a given energy = lower E-threshold

o

High ZA: shower more distant, larger light pool, but
also lower photon density for a given energy =
arger A_g at high E (for single IACT or small-size array)
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Arrival of C-photons at the ground
Gamma 100 GeV Proton 200 GeV

CORSIKA simulation CORSIKA simulation,

Cherenkov pulse duration O(ns) = fast photodetectors needed (PMTs
or SiPMS)

If placed at the focal plane of an imaging optical system (e.g. a parabollic
mirror) allows to obtain an image of the EAS



IACT cameras

1

.ESS 1
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Energy reconstruction

_ B Based on the very good
= [ 100 Gev —onirh=0° correlation between the
=10 BN
= E 50 GeV | number of collected C-photons
5 o0 oy (.?IZE) fand the energy, for a
T given impact parameter.
= 10 GeV
o E... obtained from MC-trained
P bt o Look-Up Tables (or multivariate
10 & 5GeV i S o . .
: regression methods like
E random forest) on Size, i.p.,
ol o oala 0 oo owow B ow o zenith angle, height of shower

0 200 400 600 maximum
D. Sobczynska, CORSIKA simulations i

Note: actually the light pool is not, even in average, exactly round: the
geomagnetic field separates + and — charges in the E-W direction. This is taken
into account (via a parametrized correctin) in the LUT-based E reconstruction
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JACT camera (MAGIC-I)

2000 million frames per second y-candidates

Run 325446 Event 56




mCrab sensitivity DAV 94
by ~ 0.5 CU N/d?, din kpc
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Outlook:with the futurelACT array CTA"
* - = Detect SNRs in the whole galaxy

| - N g & study cut-offs up to =100 TeV
| E : g



