Results from NA61/SHINE on Hadronic Interactions in Cosmic-Ray Air Showers M. Unger (KIT) for the NA61/SHINE Collaboration

NA35 3.2 TeV O+Pb interactions

ISAPP School 2018

Air Shower Observables and Hadronic Interactions

- ► X_{max} is dominated by first interaction →most relevant data from LHC
- ► muons from π[±] decay at late stage of cascade (λ_{dec} ~ λ_{int}) →all interaction energies relevant!

energy of last interaction before decay to μ air shower \rightarrow hadron + air $\rightarrow \pi/K + X$

 $\mu + \nu_{\mu}$

high-energy air shower

- e.g. KASCADE:
 - ► $E_0 = 10^{15} \text{ eV}$
 - ▶ r = 40-200 m
 - ▶ E_µ ≥ 250 MeV

energy of last interaction before decay to μ air shower \rightarrow hadron + air $\rightarrow \pi/K + X$

I.C. Maris for NA61/SHINE, Proc. 31st ICRC, (2009)

4/1

 $2/3 E_0 \approx 0.67 E_0$

simple model:

 \blacktriangleright energy fraction $f\sim 2/3$ to π^\pm

 $(3)^{3}E_{0} \approx 0.30 E_{0}$

- energy fraction $(1-f) \sim 1/3$ to π^0
- \rightarrow fraction of initial energy in hadronic component after n interactions: f^n

 $(2/3)^4 L_0 \approx 0.20 E_0$

 $(2/3) E_0 \approx 0.13 E_0$

 $(2/3)^2 E_0 \approx 0.44 E_0$

number of muons depends on energy fraction f of produced hadrons

The Super Proton Synchrotron (SPS) at CERN

Maximum Beam Momentum: Z× 450 GeV/c, accelerates p, p, O, S, Ar, Pb..

H2 Beam Line: Primary Beam, fragments, π^\pm , K $^\pm$...

A precise (2% dp/p acceptance), robust, flexible magnetic spectrometer

EHN1 Building NA61

Beam Particle Id (Mass via Cherenkov Angle)

SPS

CEDAR (CErenkov Differential counters with Achromatic Ring focus)

Beam Particle Id (A and Z with ToF, dE/dX, Č)

SPS

installation of ToF cable along H2 beam line, Feb 2018

 Z^2 detector, Be run (Cherenkov in Quartz)

Interaction Target at NA61/SHINE (Hz, C, ...)

NA61/SHINE

Particle Production Measurement at NA61/SHINE

- large acceptance pprox 50% at $p_T \leq 2.5 \, {\rm GeV/c}$
- momentum resolution: $\sigma(p)/p^2 \approx 10^{-4} ({\rm GeV/c})^{-1}$
- tracking efficiency: > 95%

Particle Production Measurement at NA61/SHINE

Particle Production Measurement at NA61/SHINE

NA61 Data on Hadron+Carbon Interactions

T2K, MINER ν A, MINOS, NO ν A, DU ν E

	р	year	$N_{\rm trig}/10^6$
p+C	31	2007/09	6.1
p+C	60	2016	3.1
p+C	90	2017	2.4
p+C	120	2012	1.1*
p+C	120	2017	2.6
π^+ +C	30	2017	2.2
π^- +C	60	2017	2.6
π^- +C	158	2009	5.5
π^- +C	350	2009	4.6
K ⁺ +C	60	2015	0.7*

without magnetic field, $~\sim15 imes10^{6}$ events in total

Pierre Auger Observatory, Telescope Array, IceTop

Cross Section Measurements with NA61

Schematic of Beam Line:

Cross Section Measurements with NA61

inelastic and production cross sections:

 $\sigma_{\rm inel} = \sigma_{\rm tot} - \sigma_{\rm ela}$

$$\sigma_{\sf prod} = \sigma_{\sf tot} - \sigma_{\sf qela} - \sigma_{\sf ela}$$

π^\pm and p multiplicities in p+C at 31 GeV/c

(lines to guide the eye)

- NA61/SHINE, Eur.Phys.J. C76 (2016) 84
- also: K^{\pm} , K^0_S , Λ

Inclusive π^{\pm} and p spectra in p+C at 31 GeV/c

colors: data/MC, dark-red = 0.5, green = 1, dark-blue = 2

π^{\pm} , K $^{\pm}$, p and $ar{ m p}$ spectra in π^- +C at 158 and 350 GeV/c

A.Herve for NA61/SHINE, ICRC2015 R.Prado for NA61/SHINE, ICRC2017

p_T-integrated Spectra: π^- +C $ightarrow \pi^\pm$ +X

EPOS1.99

p_T-integrated Spectra: π^- +C ightarrow K $^\pm$ + X

EPOS1.99

p_T-integrated Spectra: π^- +C ightarrow p/ $ar{\mathsf{p}}$ + X

EPOS1.99

$oldsymbol{ ho}^0$ Production in π^- +C at 158 and 350 GeV/c

Measured Energy Fractions

muon production in air showers:

T.Pierog, ICRC2017

Summary and Outlook

- precise lab measurements of last stages of UHECR air shower development with NA61/SHINE
- spectra of π[±], K[±], p, p̄, ρ⁰, ω, K^{*0},K⁰_S, Λ, Λ̄ in π[−]+C interactions at 158 and 350 GeV/c
- energy fractions of (anti-)baryon and ρ⁰ production relate directly to muon production in air showers
- next up in CR-related program: measurement of nuclear fragmentation*

inside NA61 (Julien Ordan/CERN)