An Update on Google's Quantum Computing Initiative

November 6, 2018 kkissell@google.com

Macroscopic QM Enables New Technology

Control of single quantum systems, to quantum computers

<u>1 nm</u> μ**m** H atom wavefunctions: Problem: Light is 1000x larger

Google Cloud

1 mm

Large "atom" has room for complex control

Quantum Chips at Google

Fluxmon

Flux qubit with tunable coupling

Good for optimization problems

Xmon

X-shaped transmon qubit

Good for building a digital, gate-based quantum computer (requires error correction)

Gmon

Transmon qubit with tunable nearest-neighbor coupling

Good for simulation problems

Google Cloud

Xmon: Direct coupling + Tunable Transmons

- Direct qubit-qubit capacitive coupling
- Turn interaction on and off with frequency control

Coupling rate $\Omega_{zz} \approx 4\eta g^2 / \Delta^2$

Logic Built from Universal Gates

Google Cloud

Classical circuit: **Quantum circuit:** 1 qubit rotation 1 bit NOT 2 qubit CNOT 2 bit AND 1 Input Gates No copy Wiring fan-out 2 Input Gates (space+time) time

Space-Time Volume of a Quantum Gate Computation

Uncorrected Gate
"Circuits" Limited by
Fidelity of Operations
and Decoherence Times

Fidelity is the Third Dimension

Execution of a Quantum Simulation

Google Cloud

Quantum Simulation Results, H₂ Molecule

9 Qubit: Good performance, Limited Scaling

9 qubit device has good performance

- Err_{CZ} down to 0.6%
- Err_{SQ} < 0.1%
- Err_{RO} = 1%

Limited to 1D connectivity (planar geometry)

Scale-up strategy: move qubits, control to different planes

Bump-Bond Architecture

- Bond together two separate chips
 - Qubits → "Chip"
 - Control → "Carrier"
- Superconducting interconnect
- Use lossless vacuum as dielectric

Scaling to 2D

Design must be "tileable" (control fits in qubit footprint)

- Readout resonator
- XY coupler
- SQUID coupler

Need to shield qubits from interior wire routing

Small coupling to 50Ω line will decohere qubit

"Foxtail" 22 Qubit Device

Google Cloud

2D Unit Cell

- Diagonal for surface code:
 all "measure" qubits on same line
- Condense footprint across 2 chips
- Introduce shielded wiring between qubits
- Tile unit cell for 2D array

Unit cell: Condensed, diagonal linear chain

Unit cell designed for surface code

ondense

"Bristlecone" Architecture

Bristlecone

Tile for a 2D grid of n.n. coupled qubits Bonus: Looks like a pine cone!

"72 qubits cold in fridge"

Google Cloud

C'est quoi ce Cirq?

Cloud Quantum Computing Workflow

Is this a good quantum circuit?

```
CZ a b
CZ b c
CZ c d
CZ d e
CZ e f
CZ f g
CZ g h
CZ h i
```

Is this a good quantum circuit?

No: large depth

```
CZ a b
CZ c d
CZ e f
CZ g h
CZ b c
```

CZ b C CZ d e CZ f g CZ h i

CZ	a	b	a →
CZ	C	d	b —
CZ	e	f	C
CZ	g	h	d •
			e 🕂
CZ	b	C	f —
CZ	d	e	g
CZ	f	g	h 🕂
CZ	h	i	i ——

CZ a b CZ c d CZ e f

CZ g h

CZ b c CZ d e CZ f g CZ h i

No: Does Not Map to Physical Topology

```
CZ a b
CZ c f
CZ e d
CZ g h
```

CZ b c CZ f e CZ d g CZ h i

CZ a b CZ c f CZ e d CZ g h

CZ b c CZ f e CZ d g CZ h i

CZ b c CZ f e CZ d g CZ h i

Maybe. But in some devices 2-qubit gates can't be adjacent.

CZs on an Xmon Device

Neighboring qubits are always interacting

Interaction is much stronger when frequencies closer

Keep neighboring qubits' frequencies far apart when idling

Thus checkerboard pattern of high/low frequencies

CZs on an Xmon Device

Meet frequencies in the middle for awhile to perform a CZ

Move nearby qubit freqs even further away to reduce error

Can't do two CZs next to each other; causes extra interactions

Takes 8 layers to perform a CZ along every edge

Hardware-Agnostic Languages for NISQ?

Hardware control
Mix of industry tools
and proprietary

Assembly languages
OpenQASM
Quil
aQasm

Frameworks
PyQuil
QISKit
ProjectQ

<u>Languages</u>

Q#

higher levels of abstraction

Cirq is built in the belief that NISQ programming tools need to be hardware aware, not hardware agnostic.

Cirq is

 An open source Python framework for writing, optimizing, and running quantum programs on near term hardware.

```
import cirq
    # Define a qubit.
    qubit = cirq.GridQubit(0, 0)
    # Create a circuit (qubits start in the |0> state).
    circuit = cirq.Circuit.from ops(
        cirq.X(qubit)**0.5, # Square root of NOT.
        cirq.MeasurementGate('result').on(qubit) # Measurement.
    print(circuit)
C→ (0, 0): —X^0.5—M—
```

Google Cloud

Confidential & Proprietar

Cirq Structure

Google Clo

Use Case: Quantum Program Writer

Use Case: Optimizer

Google Clo

Use Case: Transcoder

Google Clo

Workhorses: Circuit & Schedule

Circuit

Discretized

Google Cloud

- A Circuit is a list of Moments
- Moments are made up of Operations
- An Operation is a Gate plus Qubits it acts upon
- Ignores timing and durations
- Can enforce some **Device** constraints (WIP)

Schedule

- Continuous
- A Schedule is made up of ScheduledOperations plus a Device
- A ScheduledOperation is an Operation plus a start time and duration
- Timing explicit
- Device contains all of the constraints for hardware

1-bit Calculator

$$0+0=?$$

 $0+1=?$
 $1+0=?$
 $1+1=?$

The 1-bit Calculator in Cirq - Build a Circuit

```
import matplotlib.pyplot as plot
from pandas import DataFrame
import cirq
from cirq.ops import CNOT, TOFFOLI
runs = 1000
# Create 3 qubits in a line
q1 = cirq.GridQubit(0,0)
q2 = cirq.GridQubit(0,1)
q3 = cirq.GridQubit(0,2)
# Create a circuit for the qubits
circuit = cirq.Circuit.from ops(
    cirq.H(q1), cirq.H(q2), # Start wiih H gates on q1 and q2
   TOFFOLI(q1,q2,q3), CNOT(q1,q2),
    cirq.measure(q2, key='m1'), cirq.measure(q3, key='m2'))
print("Circuit:")
print(circuit)
Circuit:
(0, 0): ---H-
(0, 1): -H - Q - X - M('m1') - 
(0, 2): -----X -----M('m2')
```


The 1-bit Calculator in Cirq - Simulate and Sample

```
# Instantiate a simulator and run the circuit
simulator = cirq.google.XmonSimulator()
result = simulator.run(circuit, repetitions=runs)
summary = \{ '00':0, '01':0, '10':0 \}
for m1, m2 in zip(result.measurements['m1'], result.measurements['m2']):
    if m1[0] and not m2[0]:
                                                                            0.8
        summary['01'] += 1.0 / runs
    elif not m1[0] and m2[0]:
        summary['10'] += 1.0 / runs
                                                                            0.6
    else:
        summary['00'] += 1.0 / runs
print()
                                                                            0.4
print('Result:')
fig = plot.figure()
subplot = fig.add subplot(111)
subplot.set xticks(range(3))
subplot.set ylim([0, 1.0])
subplot.bar(range(3), summary.values())
  = subplot.set xticklabels(summary.keys())
plot.show()
                                                                                       10
                                                                                                      00
                                                                                                                      01
```

Circuit Optimization in Cirq

```
In [1]: from optimization_demo import *
In [2]: c = make inefficient circuit()
In [3]: print(c)
In [4]: optimize(c)
In [5]: print(c)
```

6 → 3 Two-input Ops

Google Cloud

Thanks for Your Attention!

Resources:

Cirq https://github.com/quantumlib/Cirq

https://github.com/guantumlib/OpenFermion

