
Quantum computing with near term
devices

CERN - Quantum Computing for High Energy Physics Workshop
November 5, 2018

Will Zeng

The world’s first full-stack quantum computing
company.

8-qubit and 19-qubit QPUs released on our
cloud platform in 2017

100+ employees w/ $119M raised

Home of Fab-1, the world’s first commercial
quantum integrated circuit fab

Located in Berkeley, Calif. (R&D Lab) and
Fremont, Calif.

2

3

The first quantum processors
are here today

> Superconducting
processors operating at 10mK

> Compute w/ individual
microwave photons

> New programming model
w/ potential for huge linear
algebra

> Need to improve both
quantum memory size and
performance

Why now?

NISQ Hardware
+

Hybrid Software

Superconducting qubits have now gotten good enough to scale

Superconducting qubit performance has increased by > 106 in the last 15 years

Rigetti Computing Proprietary and Confidential 6

Towards
128Q
Rigetti is building towards a
128 qubit system by scaling
out a tileable lattice of qubits.

1994

TODAY

1992-4
First Quantum Algorithms w/ Exponential Speedup
(Deutsch-Jozsa, Shor’s Factoring, Discrete Log, ...)

1996
First Quantum Database Search Algorithm (Grover’s)

2008

2007
Quantum Linear Equation Solving (Harrow, Hassidim, Lloyd)

Quantum Algorithms for SVM’s & Principal Component Analysis

Robust hybrid algorithms can run on smaller processors

These algorithms require
Big, Perfect Quantum Computers

 > 10,000,000 qubits for Shor’s
algorithms

to factor a 2048 bit number

TODAY

2013

2016

Practical Quantum Chemistry Algorithms (VQE)

Practical Quantum Optimization Algorithms (QAOA)
Simulations on Near-term Quantum Supremacy

Hybrid quantum/classical algorithms

Noise Robust, empirical speedups

What is the state of
the art in

programming these
processors?

You’re in the right talk!

This talk: Programming Rigetti Quantum Computers

1. The Quil programming model

2. PyQuil: Wavefunction, QuantumComputer, Compilation,
Binary Patching

3. What’s next!

 Forest SDK

Quantum Processors
Superconducting QPUs

Instruction language
Quil

Programming toolkit
pyQuil

Algorithms &
application libraries

grove, openfermion, ...

Compiler & simulator
quilc & QVM

API

Integrated quantum/classical computing A motivation for Quil

Quantum programming is preparing and sampling from complicated distributions

bits:
[0]...[N]

qubits:
0...M

1. Send program
e.g.
X 0
CNOT 0 1

3. Sample

qubits:
0...M

2. Prep
Distribution

We parameterize and learn the quantum program to make it more robust

A motivation for Quil

bits:
[0]...[N]

qubits:
0...M

1. Send parameterized program

e.g.
RX(𝛳) 2

3. Sample

qubits:
0...M

2. Prep
Distribution4. Optimize

choice of 𝛳
against some
objective

Integrated quantum/classical computing

PyQuil

Control
Computer

Qubit
operations

0

1

0 1 0 1 0 1 1 0 0 0 1...

Readout

Pulse
program

QPU

Quantum Abstract Machine (QAM)

Ψ: Quantum state (qubits) → quantum instructions

C: Classical state (bits) → classical and measurement instructions

κ: Execution state (program)→ control instructions (e.g., jumps)

Quil Example

H 3

MEASURE 3 [4]

JUMP-WHEN @END [5]

.

.

.

Quantum Abstract Machine (QAM)

Ψ: Quantum state (qubits) → quantum instructions

C: Classical state (bits) → classical and measurement instructions

κ: Execution state (program)→ control instructions (e.g., jumps)

Quil Example

H 3

MEASURE 3 [4]

JUMP-WHEN @END [5]

.

.

.QAM: Ψ0, C0, κ0

Ψ1, C0, κ1

1. Hadamard on
qubit 3

0. Initialize into zero states

Quantum Abstract Machine (QAM)

Ψ: Quantum state (qubits) → quantum instructions

C: Classical state (bits) → classical and measurement instructions

κ: Execution state (program)→ control instructions (e.g., jumps)

Quil Example

H 3

MEASURE 3 [4]

JUMP-WHEN @END [5]

.

.

.QAM: Ψ0, C0, κ0

Ψ1, C0, κ1

1. Hadamard on
qubit 3

0. Initialize into zero states

Ψ2, C0, κ2

Ψ3, C1, κ2
2. Measure qubit 3
into bit #4

Outcome 0

Outcome 1

Quantum Abstract Machine (QAM)

Ψ: Quantum state (qubits) → quantum instructions

C: Classical state (bits) → classical and measurement instructions

κ: Execution state (program)→ control instructions (e.g., jumps)

Quil Example

H 3

MEASURE 3 [4]

JUMP-WHEN @END [5]

.

.

.QAM: Ψ0, C0, κ0

Ψ1, C0, κ1

1. Hadamard on
qubit 3

0. Initialize into zero states

Ψ2, C0, κ2

Ψ3, C1, κ2
2. Measure qubit 3
into bit #4

Outcome 0

Outcome 1
...

...

Ψ2, C0, κ3

...

3. Jump to end of program
if bit #5 is TRUE

pyQuil Quantum Programming and Interfacing with Rigetti devices

 Forest SDK

Quantum Processors
Superconducting QPUs

Instruction language
Quil

Programming toolkit
pyQuil

Algorithms &
application libraries

grove, openfermion, ...

Compiler & simulator
quilc & QVM

API

pyQuil is:
1. A library with functions to easily generate quil

programs
2. Interface to quilc & the QVM.
3. Contains a circuit simulator
4. Objects for controlling execution of quil

programs: QPU or QVM.

Main Objects

QuantumComputer Program list_quantum_computers

QPU or Simulator

Compilation mode

Noise modeling for
simulator

Gates

Generators of
Gates

(PauliTerm)

Composition

Getting information about
Live Chips

pyQuil The QuantumComputer object

QuantumComputer
● run(executable)
● run_and_measure(program, trials)
● load / write_memory / run / wait

/ read_memory_region

AbstractCompiler QAM AbstractDevice

Has

QPUCompiler

QVMCompiler

QPU

QVM

Device

NxDevice

pyQuil The QuantumComputer object: A hierarchy of realism

Physical QPU

Chip simulation with chip noise
models

Chip simulation with partial
noise

Pure state simulation

Full noise

partial noise

Pure state simulation

Physical
lattice

Arbitrary
lattice

Simulation

Reality

pyQuil The QuantumComputer object: Using the WavefunctionSimulator

Simulation

Reality

from pyquil import Program

from pyquil.gates import *

from pyquil.api import WavefunctionSimulator

def ghz_state(qubits):

 """Create a GHZ state on the given list of qubits by applying a Hadamard gate to the
 first qubit followed by a chain of CNOTs

 """

 program = Program()

 program += H(qubits[0])

 for q1, q2 in zip(qubits, qubits[1:]):

 program += CNOT(q1, q2)

 return program

program = ghz_state(qubits=[0, 1, 2])

print(program)

wfn = WavefunctionSimulator().wavefunction(program)

print(wfn) # (0.7071067812+0j)|000> + (0.7071067812+0j)|111>

pyQuil The QuantumComputer object: Using the WavefunctionSimulator

Simulation

Reality

from pyquil import Program

from pyquil.gates import *

from pyquil.api import WavefunctionSimulator

def ghz_state(qubits):

 """Create a GHZ state on the given list of qubits by applying a Hadamard gate to the
 first qubit followed by a chain of CNOTs

 """

 program = Program()

 program += H(qubits[0])

 for q1, q2 in zip(qubits, qubits[1:]):

 program += CNOT(q1, q2)

 return program

program = ghz_state(qubits=[0, 1, 2])

print(program)

wfn = WavefunctionSimulator().wavefunction(program)

print(wfn) # (0.7071067812+0j)|000> + (0.7071067812+0j)|111>

pyQuil The QuantumComputer object: Using the WavefunctionSimulator

Simulation

Reality

from pyquil import Program

from pyquil.gates import *

from pyquil.api import WavefunctionSimulator

def ghz_state(qubits):

 """Create a GHZ state on the given list of qubits by applying a Hadamard gate to the
 first qubit followed by a chain of CNOTs

 """

 program = Program()

 program += H(qubits[0])

 for q1, q2 in zip(qubits, qubits[1:]):

 program += CNOT(q1, q2)

 return program

program = ghz_state(qubits=[0, 1, 2])

print(program)

wfn = WavefunctionSimulator().wavefunction(program)

print(wfn) # (0.7071067812+0j)|000> + (0.7071067812+0j)|111>

pyQuil The QuantumComputer object: A hierarchy of realism

Simulation

Reality

from pyquil import get_qc

qc = get_qc(‘3q-qvm’) # 3-qubit qvm (fully connected lattice of qubits)

qc = get_qc(‘20q-qvm’) # 20-qubit qvm (fully connected lattice of qubits)

qc = get_qc(‘20q-noisy-qvm’) # 20-qubit qvm (fully connected lattice of qubits)

qc = get_qc(‘Apsen-xxx-noisy-qvm’) # Aspen topology simulated with chip noise

qc = get_qc(‘aspen-xx’) # runs on the QPU

pyQuil The QuantumComputer object: A hierarchy of realism
-custom noise

Simulation

Reality

NxDevice takes a networkx graph as the topology

fully_connected_device = NxDevice(topology=nx.complete_graph(n_qubits))

generates gate objects with specifications of noise

gates = gates_in_isa(fully_connected_device.get_isa())

only implement measurement noise

noise_model = _decoherence_noise_model(gates, T1=np.infty, T2=np.infty,

 gate_time_1q=0, gate_time_2q=0,

 ro_fidelity=q0_p00)

construct QC object with customized everything!

qc = QuantumComputer(name='2q-qvm',

 qam=QVM(connection=ForestConnection(),

 noise_model=noise_model),

 compiler=MyCompiler(),

 device=fully_connected_device)

What’s next?

Job to Job latency is critical to
hybrid algorithms. Wall clock
time is often proportional to this
latency.

How can this be reduced?

API MODEL

Quantum Processors
Superconducting QPUs

Instruction language
Quil

Programming toolkit
pyQuil

Algorithms &
application libraries

grove, openfermion, ...

Compiler & simulator
quilc & QVM

SLOW

REST API

Rigetti Quantum Cloud Services
No install access to dedicated Quantum Machine Images

Open source, Python SDK

Fast hybrid programming

Signup for beta access at rigetti.com/qcs

Hybrid computing with the Quantum Machine Image

Signup to QCS gives you your own QMI complete quantum development environment (think virtual machine)

Hybrid computing with the Quantum Machine Image

Signup to QCS gives you your own QMI complete quantum development environment (think virtual machine)

Quantum Approximate Optimization Algorithm
[QAOA] Hybrid algorithm used for constraint satisfaction problems

Given binary constraints: MAXIMIZE

Traveling Salesperson Scheduling Clustering Boltzmann Machine Training

Hadfield et al. 2017 [1709.03489] Otterbach et al. 2017 [1712.05771] Verdon et al. 2017 [1712.05304]

QAOA in Forest
In 14 lines of code

from pyquil.quil import Program
from pyquil.gates import H
from pyquil.paulis import sI, sX, sZ, exponentiate_commuting_pauli_sum
from pyquil.api import QPUConnection

graph = [(0, 1), (1, 2), (2, 3)]
nodes = range(4)

init_state_prog = sum([H(i) for i in nodes], Program())
h_cost = -0.5 * sum(sI(nodes[0]) - sZ(i) * sZ(j) for i, j in graph)
h_driver = -1. * sum(sX(i) for i in nodes)

def qaoa_ansatz(betas, gammas):
 return sum([exponentiate_commuting_pauli_sum(h_cost)(g) +
exponentiate_commuting_pauli_sum(h_driver)(b) \
 for g, b in zip(gammas, betas)], Program())

program = init_state_prog + qaoa_ansatz([0., 0.5], [0.75, 1.])

qvm = QPUConnection()
qvm.run_and_measure(program, qubits=nodes, trials=10)

Open areas in quantum programming

> Debuggers

> Optimizing compilers

> Application specific packages

> Adoption and implementations
forestopenfermion

Forest

OpenFermion XaCC

$2k grants no-strings attached for open source
quantum/classical hybrid programming

Unitary Fund

http://unitary.fund

* Platform agnostic: not Rigetti sponsored

http://unitary.fund

$1M Quantum
Advantage Prize

Using Rigetti QCS to solve valuable a business problem better,
faster, or cheaper than otherwise possible.

More details online.

35

QCS signup: https://www.rigetti.com/

Forest SDK: https://www.rigetti.com/forest

Documentation: https://www.pyquil.readthedocs.io

Links

https://www.rigetti.com/
https://www.rigetti.com/forest
https://www.pyquil.readthedocs.io

