
Quantum computing with near term 
devices

CERN - Quantum Computing for High Energy Physics Workshop
November 5, 2018

Will Zeng



The world’s first full-stack quantum computing 
company.

8-qubit and 19-qubit QPUs released on our 
cloud platform in 2017

100+ employees w/ $119M raised

Home of Fab-1, the world’s first commercial 
quantum integrated circuit fab

Located in Berkeley, Calif. (R&D Lab) and 
Fremont, Calif. 

2



3

The first quantum processors 
are here today

> Superconducting 
processors operating at 10mK

> Compute w/ individual 
microwave photons

> New programming model 
w/ potential for huge linear 
algebra

> Need to improve both 
quantum memory size and 
performance



Why now?

NISQ Hardware
+

Hybrid Software



Superconducting qubits have now gotten good enough to scale

Superconducting qubit performance has increased by  > 106 in the last 15 years 
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Towards
128Q
Rigetti is building towards a 
128 qubit system by scaling 
out a tileable lattice of qubits.



1994

TODAY

1992-4
First Quantum Algorithms w/ Exponential Speedup 
(Deutsch-Jozsa, Shor’s Factoring, Discrete Log, ...)

1996
First Quantum Database Search Algorithm (Grover’s)

2008

2007
Quantum Linear Equation Solving (Harrow, Hassidim, Lloyd)

Quantum Algorithms for SVM’s & Principal Component Analysis

Robust hybrid algorithms can run on smaller processors

These algorithms require 
Big, Perfect Quantum Computers

 > 10,000,000 qubits for Shor’s 
algorithms

to factor a 2048 bit number

TODAY

2013

2016

Practical Quantum Chemistry Algorithms (VQE)

Practical Quantum Optimization Algorithms (QAOA)
Simulations on Near-term Quantum Supremacy

Hybrid quantum/classical algorithms

Noise Robust, empirical speedups



What is the state of 
the art in 

programming these 
processors?

You’re in the right talk!



This talk: Programming Rigetti Quantum Computers

1. The Quil programming model

2. PyQuil: Wavefunction, QuantumComputer, Compilation, 
Binary Patching

3. What’s next!

                  Forest SDK 

Quantum Processors
Superconducting QPUs

Instruction language
Quil

Programming toolkit
pyQuil 

Algorithms & 
application libraries

grove, openfermion, ...

Compiler & simulator
quilc & QVM

API



Integrated quantum/classical computing A motivation for Quil

Quantum programming is preparing and sampling from complicated distributions

bits:
[0]...[N]

qubits:
0...M

1. Send program
e.g.
X 0
CNOT 0 1

3. Sample

qubits:
0...M

2. Prep 
Distribution



We parameterize and learn the quantum program to make it more robust

A motivation for Quil

bits:
[0]...[N]

qubits:
0...M

1. Send parameterized program

e.g.
RX(𝛳) 2

3. Sample

qubits:
0...M

2. Prep 
Distribution4. Optimize 

choice of 𝛳
against some 
objective

Integrated quantum/classical computing



PyQuil

Control 
Computer

Qubit 
operations

0

1

0 1 0 1 0 1 1 0 0 0 1...

Readout

Pulse 
program

QPU



Quantum Abstract Machine (QAM) 

Ψ: Quantum state (qubits)    → quantum instructions

C: Classical state (bits)     → classical and measurement instructions

κ: Execution state (program)→ control instructions (e.g., jumps)

# Quil Example

H 3

MEASURE 3 [4]

JUMP-WHEN @END [5]

.

.

.



Quantum Abstract Machine (QAM) 

Ψ: Quantum state (qubits)    → quantum instructions

C: Classical state (bits)     → classical and measurement instructions

κ: Execution state (program)→ control instructions (e.g., jumps)

# Quil Example

H 3

MEASURE 3 [4]

JUMP-WHEN @END [5]

.

.

.QAM: Ψ0, C0, κ0

Ψ1, C0, κ1

1. Hadamard on 
qubit 3

0. Initialize into zero states



Quantum Abstract Machine (QAM) 

Ψ: Quantum state (qubits)    → quantum instructions

C: Classical state (bits)     → classical and measurement instructions

κ: Execution state (program)→ control instructions (e.g., jumps)

# Quil Example

H 3

MEASURE 3 [4]

JUMP-WHEN @END [5]

.

.

.QAM: Ψ0, C0, κ0

Ψ1, C0, κ1

1. Hadamard on 
qubit 3

0. Initialize into zero states

Ψ2, C0, κ2

Ψ3, C1, κ2
2. Measure qubit 3 
into bit #4 

Outcome 0

Outcome 1



Quantum Abstract Machine (QAM) 

Ψ: Quantum state (qubits)    → quantum instructions

C: Classical state (bits)     → classical and measurement instructions

κ: Execution state (program)→ control instructions (e.g., jumps)

# Quil Example

H 3

MEASURE 3 [4]

JUMP-WHEN @END [5]

.

.

.QAM: Ψ0, C0, κ0

Ψ1, C0, κ1

1. Hadamard on 
qubit 3

0. Initialize into zero states

Ψ2, C0, κ2

Ψ3, C1, κ2
2. Measure qubit 3 
into bit #4 

Outcome 0

Outcome 1
...

...

Ψ2, C0, κ3

...

3. Jump to end of program 
if bit #5 is TRUE





pyQuil Quantum Programming and Interfacing with Rigetti devices

                  Forest SDK 

Quantum Processors
Superconducting QPUs

Instruction language
Quil

Programming toolkit
pyQuil 

Algorithms & 
application libraries

grove, openfermion, ...

Compiler & simulator
quilc & QVM

API

pyQuil is:
1. A library with functions to easily generate quil 

programs
2. Interface to quilc & the QVM.
3. Contains a circuit simulator
4. Objects for controlling execution of quil 

programs: QPU or QVM.

Main Objects

QuantumComputer Program list_quantum_computers

QPU or Simulator

Compilation mode

Noise modeling for 
simulator

Gates

Generators of 
Gates 

(PauliTerm)

Composition

Getting information about 
Live Chips



pyQuil The QuantumComputer object

QuantumComputer
● run(executable)
● run_and_measure(program, trials)
● load / write_memory / run / wait 

/ read_memory_region

AbstractCompiler QAM AbstractDevice

Has

QPUCompiler

QVMCompiler

QPU

QVM

Device

NxDevice



pyQuil The QuantumComputer object: A hierarchy of realism

Physical QPU

Chip simulation with chip noise 
models

Chip simulation with partial 
noise

Pure state simulation 

Full noise

partial noise

Pure state simulation 

Physical 
lattice

Arbitrary 
lattice

Simulation

Reality



pyQuil The QuantumComputer object: Using the WavefunctionSimulator

Simulation

Reality

from pyquil import Program

from pyquil.gates import *

from pyquil.api import WavefunctionSimulator

def ghz_state(qubits):

    """Create a GHZ state on the given list of qubits by applying a Hadamard gate to the
    first qubit followed by a chain of CNOTs

    """

    program = Program()

    program += H(qubits[0])

    for q1, q2 in zip(qubits, qubits[1:]):

        program += CNOT(q1, q2)

    return program

program = ghz_state(qubits=[0, 1, 2])

print(program)

wfn = WavefunctionSimulator().wavefunction(program)

print(wfn)  # (0.7071067812+0j)|000> + (0.7071067812+0j)|111>
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pyQuil The QuantumComputer object: A hierarchy of realism

Simulation

Reality

from pyquil import get_qc

qc = get_qc(‘3q-qvm’)  # 3-qubit qvm (fully connected lattice of qubits)

qc = get_qc(‘20q-qvm’)  # 20-qubit qvm (fully connected lattice of qubits)

qc = get_qc(‘20q-noisy-qvm’)  # 20-qubit qvm (fully connected lattice of qubits)

qc = get_qc(‘Apsen-xxx-noisy-qvm’)  # Aspen topology simulated with chip noise

qc = get_qc(‘aspen-xx’)  # runs on the QPU



pyQuil The QuantumComputer object: A hierarchy of realism 
-custom noise

Simulation

Reality

# NxDevice takes a networkx graph as the topology

fully_connected_device = NxDevice(topology=nx.complete_graph(n_qubits))

# generates gate objects with specifications of noise

gates = gates_in_isa(fully_connected_device.get_isa())

# only implement measurement noise

noise_model = _decoherence_noise_model(gates, T1=np.infty, T2=np.infty,

                                                   gate_time_1q=0, gate_time_2q=0,

                                                   ro_fidelity=q0_p00)

# construct QC object with customized everything!

qc = QuantumComputer(name='2q-qvm',

                     qam=QVM(connection=ForestConnection(),

     noise_model=noise_model),

     compiler=MyCompiler(),

     device=fully_connected_device)



What’s next?



Job to Job latency is critical to 
hybrid algorithms. Wall clock 
time is often proportional to this 
latency.

How can this be reduced?

API MODEL

Quantum Processors
Superconducting QPUs

Instruction language
Quil

Programming toolkit
pyQuil 

Algorithms & 
application libraries

grove, openfermion, ...

Compiler & simulator
quilc & QVM

SLOW 

REST API



Rigetti Quantum Cloud Services
No install access to dedicated Quantum Machine Images 

Open source, Python SDK

Fast hybrid programming

Signup for beta access at rigetti.com/qcs



Hybrid computing with the Quantum Machine Image

Signup to QCS gives you your own QMI complete quantum development environment (think virtual machine)



Hybrid computing with the Quantum Machine Image

Signup to QCS gives you your own QMI complete quantum development environment (think virtual machine)



Quantum Approximate Optimization Algorithm
[QAOA] Hybrid algorithm used for constraint satisfaction problems

Given binary constraints: MAXIMIZE

Traveling Salesperson Scheduling Clustering Boltzmann Machine Training

Hadfield et al. 2017 [1709.03489] Otterbach et al. 2017 [1712.05771] Verdon et al. 2017 [1712.05304]



QAOA in Forest
In 14 lines of code

from pyquil.quil import Program
from pyquil.gates import H
from pyquil.paulis import sI, sX, sZ, exponentiate_commuting_pauli_sum
from pyquil.api import QPUConnection

graph = [(0, 1), (1, 2), (2, 3)]
nodes = range(4)

init_state_prog = sum([H(i) for i in nodes], Program())
h_cost = -0.5 * sum(sI(nodes[0]) - sZ(i) * sZ(j) for i, j in graph)
h_driver = -1. * sum(sX(i) for i in nodes)

def qaoa_ansatz(betas, gammas):
    return sum([exponentiate_commuting_pauli_sum(h_cost)(g) + 
exponentiate_commuting_pauli_sum(h_driver)(b) \
        for g, b in zip(gammas, betas)], Program())

program = init_state_prog + qaoa_ansatz([0., 0.5], [0.75, 1.])

qvm = QPUConnection()
qvm.run_and_measure(program, qubits=nodes, trials=10)



Open areas in quantum programming

> Debuggers

> Optimizing compilers

> Application specific packages

> Adoption and implementations
forestopenfermion

Forest

OpenFermion XaCC 



$2k grants no-strings attached for open source 
quantum/classical hybrid programming

Unitary Fund

http://unitary.fund 

* Platform agnostic: not Rigetti sponsored 

http://unitary.fund


$1M Quantum 
Advantage Prize

Using Rigetti QCS to solve valuable a business problem better, 
faster, or cheaper than otherwise possible.

More details online.
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QCS signup: https://www.rigetti.com/ 

Forest SDK: https://www.rigetti.com/forest 

Documentation: https://www.pyquil.readthedocs.io

Links

https://www.rigetti.com/
https://www.rigetti.com/forest
https://www.pyquil.readthedocs.io

