INTRODUCTION TO OUANTUM TECHNOLOGIES

S.Montangero
University of Padova
CERN 5/11/18

Dipartimento di Fisica
e Astronomia
Galileo Galilei

Università degli Studi di Padova
"Let the computer itself be built of quantum mechanical elements which obey quantum mechanical laws."

More generally, QIT studies what happens when one tries to

PROCESS INFORMATION VIA QUANTUM SYSTEMS

QUANTUM SCALE

Touching the quantum limit

MINIATURIZATION \& BIG DATA

Quantum effects will have to be taken into account, better exploit them!

HIGHLY CORRELATED STATES

Entanglement

QUANTUM VS CLASSICAL CORRELATIONS

Clauser-Horne-Shimony-Holt (CHSH) inequality

Locality (no influence between space-time separate regions)

$$
S=\left\langle a_{0} b_{0}\right\rangle+\left\langle a_{0} b_{1}\right\rangle+\left\langle a_{1} b_{0}\right\rangle-\left\langle a_{1} b_{1}\right\rangle \leq 2
$$

Bell state (singlet):

$$
S=2 \sqrt{2}>2
$$

INEFFICIENT COMPRESSIBILITY OF ENTANGLEMENT

$$
|\psi\rangle=\sum \psi_{\alpha_{1} \alpha_{2} \alpha_{3}}\left|\alpha_{1} \alpha_{2} \alpha_{3}\right\rangle
$$

For spins 1/2, if

$$
\begin{gathered}
\psi_{\alpha_{1} \alpha_{2} \alpha_{3}}=\frac{1}{2 \sqrt{2}} \Rightarrow|\psi\rangle=\left(\frac{1}{\sqrt{2}}(|0\rangle+|1\rangle)\right)^{\otimes 3}=\left(\sum \psi_{\alpha}|\alpha\rangle\right)^{\otimes 3} \\
8 \text { coefficients } \\
\begin{array}{c}
\text { Separable state } \\
6 \text { coefficients! }
\end{array}
\end{gathered}
$$

In general,
$d^{\wedge} N$ coefficients

$$
\left|\psi^{M F}\right\rangle=\left(\sum \psi_{\alpha}|\alpha\rangle\right)^{\otimes N}
$$

$$
|\psi\rangle=\sum \psi_{\alpha_{1} \alpha_{2} \ldots \alpha_{N}}\left|\alpha_{1} \alpha_{2} \ldots \alpha_{3}\right\rangle
$$

ENTANGLEMENT HEISENBERG
 THEORY LIMIT

QUANTUM CHANNEL QUANTUM COMPLEXITY CAPACITY CLAASSES

QUANTUM SCIENCE

QUANTUM TECHNOLOGIES

EU QUANTUM INITIATIVES

140

Research and Innovation
Actions (RIA) proposals
submitted in response of the first Quantum

Flagship call

(01)

1b €

Quantum Technology will be funded with at least one billion Euro by the European Commission.
(02)

$10+\mathrm{yrs}$

Flagship's timescale

5000+

researchers residing in all EU and associated
countries involved

QuantERA Call 2019 PreAnnouncement
In November 2018 the QuantERA Consortium, coordinated by the National Science Centre, will announce a 2nd Call for Proposals in the field of quantum technologies.

Read more

QuantERA ERA-NET Cofund in Quantum Technologies

2ND QUANTUM REVOLUTION

Quantum Technologies Timeline

Quantum Manifesto (2015)

QUANTUM COMMUNICATIONS

Quantum cryptography

Quantum metrology

Quantum channels

QUANTUM COMPUTING

Circuit model
E

One-way

QUANTUM SENSING

Quantum sensing is typically used to describe:
(I) Use of a quantum object to measure a physical quantity (classical or quantum).
(II) Use of quantum coherence (i.e., wavelike spatial or temporal superposition states) to measure a physical quantity.
(III) Use of quantum entanglement to improve the sensitivity or precision of a measurement, beyond what is possible classically.

Spin qubits, NV-centres in diamonds, trapped ions, flux qubits...

QUANTUM SIMULATIONS

Quantum Simulation, Rev. Mod. Phys.(2014)

QUANTUM SIMULATIONS OF THE SCHWINGER MODEL

IQOQI Innsbruck

21 lattice sites!
Nature (2016), arXiv:1810.03421

When do we really need a quantum simulation/computation?

TENSOR NETWORKS STATES

$$
\begin{gathered}
\psi_{\alpha_{1}, \alpha_{2}, \ldots \alpha_{N}} \quad \mathcal{O}\left(d^{N}\right) \\
A_{\alpha_{i}}^{\beta_{i}, \beta_{i+1}} \equiv-
\end{gathered}
$$

Tree Tensor Network

Tensor networks states are a faithful adaptive description of the system tunable between mean field and exact

TENSOR NETWORK ALGORITHMS

- State of the art in 1D (poly effort)
- No sign problem
- Extended to open quantum systems
- Machine learning
- Data compression (BIG DATA)
- Extended to lattice gauge theories

U(1) LATICE GAUGE THEORY IN 1+1D

$$
\begin{aligned}
H= & -t \sum_{x}\left[\psi_{x}^{\dagger} U_{x, x+1}^{\dagger} \psi_{x+1}+\psi_{x+1}^{\dagger} U_{x, x+1} \psi_{x}\right] \\
& +m \sum_{x}(-1)^{x} \psi_{x}^{\dagger} \psi_{x}+\frac{g^{2}}{2} \sum_{x} E_{x, x+1}^{2} \\
\mathcal{E}= & \sum_{x}\left\langle E_{x, x+1}\right\rangle / L
\end{aligned}
$$

- Quantum link representation
- Staggered fermions
> Ising universality class
> Central charge $c=0.49 \pm 0.01$
> Confirmed by higher-link representation
E. Rico, T. Pichler, M. Dalmonte, P. Zoller, and SM, PRL (2014)

Real time

MESONS SCATTERING

T. Pichler, E. Rico, M. Dalmonte, P. Zoller, and SM, PRX (2016)

S(2) LATICE GAUGE THEORY IN 1+1D

$$
H=H_{\text {coupl }}+H_{\text {free }}+H_{\text {break }}
$$

$$
H_{\text {coupl }}=t \sum_{j=1}^{\mathrm{L}-1} \sum_{s, s^{\prime}=\uparrow, \downarrow} c_{j, s}^{[M] \dagger} U_{j, j+1 ; s, s^{\prime}} c_{j+1, s^{\prime}}^{[M]}+\text { h.c. }
$$

$$
H_{\text {free }}=\frac{g_{0}^{2}}{2} \sum_{j=1}^{\mathrm{L}}\left[\vec{J}_{j-1, j}^{[R]}\right]^{2}+\left[\vec{j}_{j, j+1}^{[L]}\right]^{2}
$$

meson BCS

Phase diagram at
finite chemical potential

LGT HAVE APPLICATIONS IN

High-energy physics

QED, QCD, ... matter

Quantum spin ice, Kitaev model, ...

Computer science

Adiabatic computation

Quantum simulations, ...

HAMILTONIAN FORMULATION OF CLASSICAL PROBLEMS

Graph partitioning
Complete subgraph finding (clique)
Binary integer programming
Covering and packaging problems
k-sat problems
Minimal maximal matching...

ALL-TO-ALL TO LGT MAPPING

$$
\begin{aligned}
& H_{I}=\sum \sigma_{x}^{[k]} \\
& H_{F}=\sum_{i<j} V^{[i, j]} \sigma_{z}^{[i]} \sigma_{z}^{[j]} \\
& H_{F}=\sum_{k=1}^{K} f^{[k]} \sigma_{z}^{[k]}+ \\
& H_{C}=-\sum_{p=1}^{P} c^{[p]} \sigma_{z}^{\left[k_{1}\right]} \sigma_{z}^{\left[k_{2}\right]} \sigma_{z}^{\left[k_{3}\right]} \sigma_{z}^{\left[k_{4}\right]}
\end{aligned}
$$

W. Lechner, P. Hauke, and P. Zoller, Sci. Adv.. (2015)

ADIABATIC QUANTUM COMPUTING

- Preparation of the system in an "easy" state

- Slowly change the system Hamiltonian to reach another ground state which encodes the solution of the problem $\quad \downarrow \uparrow \downarrow \ldots \downarrow \downarrow \uparrow$

$$
H_{0}=-h_{0} \sum_{i=1}^{N} s_{i} \quad s_{i}=\{\uparrow, \downarrow\} \quad H(t)=\left(1-\frac{t}{T}\right) H_{0}+\frac{t}{T} H_{P}
$$

QUANTUM OPTIMAL CONTROL

Control

System

$$
i \frac{\partial}{\partial t}|\psi(t)\rangle=\left(H_{0}+f(t) H_{1}\right)|\psi(t)\rangle \quad \min _{f(t)} J(|\psi(T)\rangle)
$$

- Few-body: standard optimal control (high-accuracy, many iterations, complete knowledge...)
> Many-body: dCRAB (high-efficiency, few iterations, minimal knowledge...) H. Rabitz et.al. NJP (2009) P. Doria et al. PRL (2011)

OPTIMAL QUANTUM COMPUTING

Slow

Fast

T. Caneva et al. PRA (2014)

EXPERIMENTAL OPTIMAL QPT CROSSING

Ontimal loading of cold atoms

Speed up of one order of magnitude
Compatible with the quantum speed limit

Ulm-Munich collaboration,
Sci. Rep. (2016)

TAKE HOME MESSAGE

> Quantum technologies are fast developing

- Hybrid solutions will play a fundamental role
- Tensor network algorithms can be used to benchmark, verify, support and guide quantum simulations/computations
- Synergies between quantum technologies and high-energy physics can lead to unexpected developments:
> Sign-problem-free solutions
- Machine learning
> Quantum sensing
> Optimized protocols

Thank you for your attention!

Simone Montangero Mario Collura Tommaso Calarco		Peter Zoller Wolfgang Lechner Marcello Dalmonte	$I Q I$		
Tommaso Calarco			ikerbasque		
letre		Enrique Rico Ortega			
Thomas Pichler	(8)				
Tommaso Caneva Matthias Gerster		Rosario Fazio			
Ferdinand TschirsichWerner Weiss					
Jonathan Zoller		Jacob Sherson			
Fedor Jelezko Boris Naydenov	O				
Boris Naydenov		Marc Cheneau			
		Sebastian Hild			
Matteo Rizzi		Alessandro Silva	,		
		Giuseppe Santoro			
Tilman Pfau	versitistuty	Jörg Schmiedmayer			
		Thorsten Schumm	,		
S.Lloyd -\|			Sandrine van Frank	WIEN	

Heisenberg- Programme
 Funds:

Heisenberg Programme
DFG
Deutsche
Forschungsgemeinschaft

QUANTERA QTFLAG
QUSCO
Numerics:
$\sqrt{6 . \text { usco }}$
GRiD

https://www.cqs/9.com

