INTRODUCTION TO QUANTUM TECHNOLOGIES

S.Montangero University of Padova CERN 5/11/18

Università degli Studi di Padova

"Let the computer itself be built of quantum mechanical elements which obey quantum mechanical laws."

RICHARD FEYNMAN (1982)

More generally, QIT studies what happens when one tries to

PROCESS INFORMATION VIA QUANTUM SYSTEMS

QUANTUM SCALE

Touching the quantum limit

MINIATURIZATION & BIG DATA

Quantum effects will have to be taken into account, better exploit them!

HIGHLY CORRELATED STATES

Entanglement

QUANTUM VS CLASSICAL CORRELATIONS

Clauser-Horne-Shimony-Holt (CHSH) inequality

Locality (no influence between space-time separate regions)

$$S = \langle a_0 b_0 \rangle + \langle a_0 b_1 \rangle + \langle a_1 b_0 \rangle - \langle a_1 b_1 \rangle \le 2$$

Bell state (singlet):

$$S = 2\sqrt{2} > 2$$

N. Brunner et al. RMP 2014

INEFFICIENT COMPRESSIBILITY OF ENTANGLEMENT

$$|\psi\rangle = \sum \psi_{\alpha_1 \alpha_2 \alpha_3} |\alpha_1 \alpha_2 \alpha_3\rangle$$

For spins 1/2, if

$$\psi_{\alpha_1\alpha_2\alpha_3} = \frac{1}{2\sqrt{2}} \qquad \Rightarrow \quad |\psi\rangle = \left(\frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)\right)^{\otimes 3} = \left(\sum \psi_{\alpha} |\alpha\rangle\right)^{\otimes 3}$$

8 coefficients

Separable state 6 coefficients!

In general,

 $d^{N} coefficients \qquad |\psi^{MF}\rangle = \left(\sum \psi_{\alpha} |\alpha\rangle\right)^{\otimes N}$ $|\psi\rangle = \sum \psi_{\alpha_{1}\alpha_{2}...\alpha_{N}} |\alpha_{1}\alpha_{2}...\alpha_{3}\rangle \qquad dN coefficients$

ENTANGLEMENT HEISENBERG THEORY LIMIT QUANTUM QUANTUM CHANNEL QUANTAGE **QUANTUM COMPLEXITY** CLASSES CAPACITY

QUANTUM SCIENCE

QUANTUM TECHNOLOGIES

www.qt.eu

(03)

EU QUANTUM INITIATIVES

www.quantera.eu

Quantum Flagship in a nutshell.

 $(\mathbf{A} (\mathbf{b})$

₀₄ 140

Research and Innovation Actions (RIA) proposals submitted in response of the first Quantum Flagship call 1b€

(01)

Quantum Technology will be funded with at least one billion Euro by the European Commission. 10+ yrs

(o2)

Flagship's timescale

5000+

researchers residing in all EU and associated countries involved

QuantERA Call 2019 Pre-Announcement

In November 2018 the QuantERA Consortium, coordinated by the National Science Centre, will announce a 2nd Call for Proposals in the field of quantum technologies.

Read more

QuantERA ERA-NET Cofund in Quantum Technologies

2ND QUANTUM REVOLUTION

Quantum Technologies Timeline

Quantum Manifesto (2015)

QUANTUM COMMUNICATIONS

Quantum cryptography

Quantum metrology

Quantum random numbers

Quantum channels

QUANTUM COMPUTING

QUANTUM SENSING

Quantum sensing is typically used to describe:

(I) Use of a quantum object to measure a physical quantity (classical or quantum).

(II) Use of quantum coherence (i.e., wavelike spatial or temporal superposition states) to measure a physical quantity.

(III) Use of quantum entanglement to improve the sensitivity or precision of a measurement, beyond what is possible classically.

Spin qubits, NV-centres in diamonds, trapped ions, flux qubits...

Degen et al. RMP 2017

credits: F. Jelzko IQST

QUANTUM SIMULATIONS

Quantum Simulation, Rev. Mod. Phys. (2014)

66

When do we really need a quantum simulation/computation?

TENSOR NETWORKS STATES

Tensor networks states are a faithful adaptive description of the system tunable between mean field and exact

TENSOR NETWORK ALGORITHMS

- State of the art in 1D (poly effort)
- ► No sign problem
- Extended to open quantum systems
- ► Machine learning
- ► Data compression (BIG DATA)
- Extended to lattice gauge theories

U. Schollwock, RMP (2005) A. Cichocki, ECM (2013) I. Glasser, et al. PRX (2018)

$$H = -t \sum_{x} \left[\psi_{x}^{\dagger} U_{x,x+1}^{\dagger} \psi_{x+1} + \psi_{x+1}^{\dagger} U_{x,x+1} \psi_{x} \right]$$

+ $m \sum_{x} (-1)^{x} \psi_{x}^{\dagger} \psi_{x} + \frac{g^{2}}{2} \sum_{x} E_{x,x+1}^{2}.$

$$\mathcal{E} = \sum_{x} \langle E_{x,x+1} \rangle / L$$

- ► Quantum link representation
- Staggered fermions
- ► Ising universality class
- ► Central charge $c = 0.49 \pm 0.01$
- Confirmed by higher-link representation

E. Rico, T. Pichler, M. Dalmonte, P. Zoller, and SM, PRL (2014)

Real time

MESONS SCATTERING

T. Pichler, E. Rico, M. Dalmonte, P. Zoller, and SM, PRX (2016)

S(2) LATTICE GAUGE THEORY IN 1+1D

P. Silvi et al Quantum (2017)

LGT HAVE APPLICATIONS IN

HAMILTONIAN FORMULATION OF CLASSICAL PROBLEMS

Graph partitioning
Complete subgraph finding (clique)
Binary integer programming
Covering and packaging problems
k-sat problems
Minimal maximal matching...

A. Lucas, Front. Phys. (2014)

ALL-TO-ALL TO LGT MAPPING

W. Lechner, P. Hauke, and P. Zoller, Sci. Adv.. (2015)

ADIABATIC QUANTUM COMPUTING

> Preparation of the system in an "easy" state

Slowly change the system Hamiltonian to reach another ground state which encodes the solution of the problem $\downarrow\uparrow\downarrow\cdots\downarrow\downarrow\uparrow$

$$H_0 = -h_0 \sum_{i=1}^N s_i \qquad s_i = \{\uparrow, \downarrow\} \qquad H(t) = \left(1 - \frac{t}{T}\right) H_0 + \frac{t}{T} H_P$$

QUANTUM OPTIMAL CONTROL

$$i\frac{\partial}{\partial t}|\psi(t)\rangle = (H_0 + f(t)H_1)|\psi(t)\rangle \qquad \min_{f(t)} J(|\psi(T)\rangle)$$

- Few-body: standard optimal control (high-accuracy, many iterations, complete knowledge...)
- Many-body: dCRAB (high-efficiency, few iterations, minimal knowledge...)

H. Rabitz et.al. NJP (2009) P. Doria et al. PRL (2011)

OPTIMAL QUANTUM COMPUTING

Adiabatic Spectrum and excitation energy Optimal I↑↓↓↑↓>iabatic
3rd ategy linear Slow 2nd 1st **vtimal** GS Fast GS Critical gap It the suntrol -t/T $\rightarrow \rightarrow \rightarrow >$ $H = -\frac{1}{N}\sum_{i < j} (\sigma_i^x \sigma_j^x + \gamma \sigma_i^y \sigma_j^y) - \Gamma(t) \sum_{i < j}^N \sigma_i^z$

T. Caneva et al. PRA (2014)

EXPERIMENTAL OPTIMAL QPT CROSSING

Speed up of one order of magnitude Compatible with the quantum speed limit

Ulm-Munich collaboration,

Sci. Rep. (2016)

TAKE HOME MESSAGE

- Quantum technologies are fast developing
- ► Hybrid solutions will play a fundamental role
- Tensor network algorithms can be used to benchmark, verify, support and guide quantum simulations/computations
- Synergies between quantum technologies and high-energy physics can lead to unexpected developments:
 - Sign-problem-free solutions
 - Machine learning
 - Quantum sensing
 - Optimized protocols

HOME

NEWS

SPEAKERS

PROGRAM

VENUE AND LOGISTICS

ORGANIZERS AND CONTACTS

New Trends in Complex Quantum Systems Dynamics

9-12 April 2019

Register

Submit a talk or poster

Verònica Ahufinger	Alexia Auffeves	Immanuel Bloch
Universitat Autònoma de Barcelona	CNRS - French National Research Council	Max-Planck-Institut für Quantenoptik
Jianshu Cao	Juan José García Ripoll	John Goold
Massachusetts Institute of Technology	CSIC - Spanish National Research Council	Trinity College Dublin
Marcus Huber	Gerschon Kurizki	Misha Lukin
University of Vienna	Weizmann Institute of Science	Harvard University
Martin Plenio	Guido Pupillo	Jörg Schmiedmayer
Ulm University	Strasbourg University	TU Vienna
Paolo Villoresi	Susanne Yelin	Peter Zoller
Università di Padova	University of Connecticut	Innsbruck University
ALC: NO. OF THE OWNER.		No. of Concession, Name

https://www.cqs19.com