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“Let the computer itself be built of 
quantum mechanical elements which obey 

quantum mechanical laws.”

RICHARD FEYNMAN (1982)



PROCESS INFORMATION 
VIA QUANTUM SYSTEMS

More generally, QIT studies what happens when one tries to



QUANTUM SCALE
Touching the quantum limit



MINIATURIZATION & BIG DATA

Quantum effects will have to be taken into account, 

better exploit them! 



HIGHLY  CORRELATED STATES
Entanglement 



QUANTUM VS CLASSICAL CORRELATIONS 

Clauser-Horne-Shimony-Holt (CHSH) inequality 

Measure

Outcome

Locality (no influence between space-time separate regions)

Bell state (singlet):

N. Brunner et al. RMP 2014



INEFFICIENT COMPRESSIBILITY OF ENTANGLEMENT 
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ENTANGLEMENT 
THEORY
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LIMIT

QUANTUM CHANNEL 
CAPACITY

QUANTUM COMPLEXITY  
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QUANTUM SCIENCE 

QUANTUM  
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EU QUANTUM INITIATIVES
www.qt.eu

www.quantera.eu

http://www.qt.eu
http://www.quantera.eu


2ND QUANTUM REVOLUTION
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Quantum Technologies Timeline
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1. Communication

A  Core technology of quantum  
 repeaters 

B  Secure point-to-point  
quantum links

C   Quantum networks between 
distant cities

D Quantum credit cards

E    Quantum repeaters 
with cryptography and 
eavesdropping detection

F    Secure Europe-wide internet 
merging quantum and 
classical communication

2. Simulators

A    Simulator of motion of 
electrons in materials

B    New algorithms for quantum 
simulators and networks 

C   Development and design of 
new complex materials

D   Versatile simulator of quantum 
magnetism and electricity

E    Simulators of quantum 
dynamics and chemical 
reaction mechanisms to 
support drug design 

3. Sensors

A    Quantum sensors for niche 
applications (incl. gravity and 
magnetic sensors for health 
care, geosurvey and security)

B    More precise atomic clocks 
for TZODISPOJTBUJPO�PG�
GVUVSF�TNBSU�OFUXPSLT
�
JODM��FOFSHZ�HSJET

C    Quantum sensors for larger 
volume applications including 
automotive, construction

D    Handheld quantum navigation 
devices

E    Gravity imaging devices based 
on gravity sensors

F   Integrate quantum sensors 
with consumer applications 
including mobile devices

4. Computers

A    Operation of a logical qubit 
protected by error correction 
or topologically

B   New algorithms for quantum  
 computers

C    Small quantum processor 
executing technologically 
relevant algorithms

D    Solving chemistry and 
materials science problems 
with special purpose quantum 
computer > 100 physical qubit

E    Integration of quantum circuit 
and cryogenic classical control 
hardware

F    General purpose quantum 
computers exceed 
computational power of 
classical computers 

5 – 10 years

0 – 5 years

> 10 years

Quantum Manifesto (2015)



QUANTUM COMMUNICATIONS
Intro Quantum Computing QRNG Conclusions

Examples of applications

Quantum computer Quantum cryptography

Quantum metrology
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Intro Quantum Computing QRNG Conclusions

Examples of applications

Quantum computer Quantum cryptography

Quantum metrology
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Quantum cryptography Quantum metrology

Intro Quantum Computing QRNG Conclusions

Examples of applications
Quantum sensing Quantum imaging

Quantum simulation
Quantum random number

generation
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Quantum random numbers Quantum channels



QUANTUM COMPUTING
Intro Quantum Computing QRNG Conclusions

Shor algorithm

Order-finding by quantum computer

Va : |xi|yi ! |xi|y � ax mod Ni

I The Va operation requires O(n3) gates
I DFT requires O(n2) gates
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Circuit model

Intro Quantum Computing QRNG Conclusions

One-way quantum computer

G. Vallone, et al., One-way quantum computation with two-photon

multiqubit cluster states, Phys. Rev. A 78, 042335 (2008)
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One-wayE

t
Adiabatic - Quantum Annealing 



QUANTUM SENSING

credits: F. Jelzko IQST Degen et al. RMP 2017

Spin qubits, NV-centres in diamonds,  
trapped ions, flux qubits…

Quantum sensing is typically used to describe:  

(I) Use of a quantum object to measure a 
physical quantity (classical or quantum). 

(II) Use of quantum coherence (i.e., wavelike 
spatial or temporal superposition states) to 
measure a physical quantity. 

(III) Use of quantum entanglement to improve 
the sensitivity or precision of a measurement, 
beyond what is possible classically.



QUANTUM SIMULATIONS

Intro Quantum Computing QRNG Conclusions

Quantum simulation

Quantum Simulation, Rev. Mod. Phys. 86, 154 (2014)
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Quantum Simulation, Rev. Mod. Phys.(2014) 



QUANTUM SIMULATIONS OF THE SCHWINGER MODEL
2

close the variational trial states and energies are to the
exact values. To date, scalability and applicability of
VQS remain key challenges [25–29].

Here we demonstrate how, by using existing AQS se-
tups for VQS and focusing on lattice models, we can
scale VQS up to 20 qubits, the maximum available in our
setup. In addition, we show quantitative self-verification
of the acquired results by measuring algorithmic error
bars of the final energies, i.e. the uncertainty on the ap-
proximate ground state energy resulting from the vari-
ational ansatz state at finite circuit depth. Such algo-
rithmic error bars are evaluated on the quantum de-
vice, by directly measuring the variance of the target
Hamiltonian. The key elements behind this advance are:
(i) the use of a programmable analog quantum simu-
lator as a potentially scalable, although non-universal,
quantum hardware; (ii) our focus on quantum lattice
models of condensed matter and high-energy physics,
and incorporating intrinsic symmetries in trial states of
VQS, which allow us to reduce significantly the number
of variational parameters to be optimised; (iii) an ad-
vanced global optimisation algorithm specifically suited
for noisy, high-dimensional and gradient-free optimisa-
tion problems, and a reuse of measurement data to e�-
ciently find ground states of whole classes of Hamiltoni-
ans. Combining these elements, we demonstrate below
VQS of the lattice Schwinger model [30, 31] with up to
20 qubits on a programmable trapped-ion quantum sim-
ulator [32] that naturally implements a long-range trans-
verse XY spin model [33–35] and single site spin rota-
tions, as quantum resource.

I. VARIATIONAL QUANTUM SIMULATION
OF THE SCHWINGER MODEL WITH

TRAPPED-IONS

In VQS there exists a clear distinction between the tar-
get model Hamiltonian to be studied, and the resources
available in the laboratory that are used to produce trial
states | (✓)i. We now describe in turn the Schwinger
model as our target problem, and list available quantum
resources provided by the trapped-ion analog quantum
simulator.

Target – lattice Schwinger model: The Schwinger
model on a lattice is a paradigmatic formulation of 1D
quantum electrodynamics, and a prototype of an Abelian
lattice gauge theory [36]. It describes the interactions
between a scalar fermion field, representing both mat-
ter and antimatter with electric charges, and an Abelian
U(1) gauge field as a quantised electromagnetic field. We
use a Kogut-Susskind encoding to map fermionic configu-
rations to a spin-1/2 lattice, where a spin down (resp. up)
on an odd (even) lattice site indicates the presence of
a positron (electron) (see Appendix F for details). For
open boundary conditions, and with a Jordan-Wigner

classical CPU
(Stochastic Optimisation)
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Hybrid Quantum-Classical Feedback Loop
CDR
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<latexit sha1_base64="0paHCujhwIfPsDvz42vXBXzrQkE=">AAACDnicbVC7TgMxEPSFVwivACWNRYhEFd2lgTISDWWQyENKomjPt5eY2Hcn2xcpOuULaPgVGgoQoqWm429wHgUkjGRpNLO73h0/EVwb1/12chubW9s7+d3C3v7B4VHx+KSp41QxbLBYxKrtg0bBI2wYbgS2E4UgfYEtf3Qz81tjVJrH0b2ZJNiTMIh4yBkYK/WL5a4OQ5BcTGii4gdkho+RSgSdKpQYGRqAgX6x5FbcOeg68ZakRJao94tf3SBm6WwAE6B1x3MT08tAGc4ETgvdVGMCbAQD7FgagUTdy+bnTGnZKgENY2WfXWCu/u7IQGo9kb6tlGCGetWbif95ndSE172MR0lqMGKLj8JUUBPTWTY04MoGYKMIODDF7a6UDUEBMzbBgg3BWz15nTSrFc+teHfVUu1iGUeenJFzckk8ckVq5JbUSYMw8kieySt5c56cF+fd+ViU5pxlzyn5A+fzB/UOnI8=</latexit><latexit sha1_base64="0paHCujhwIfPsDvz42vXBXzrQkE=">AAACDnicbVC7TgMxEPSFVwivACWNRYhEFd2lgTISDWWQyENKomjPt5eY2Hcn2xcpOuULaPgVGgoQoqWm429wHgUkjGRpNLO73h0/EVwb1/12chubW9s7+d3C3v7B4VHx+KSp41QxbLBYxKrtg0bBI2wYbgS2E4UgfYEtf3Qz81tjVJrH0b2ZJNiTMIh4yBkYK/WL5a4OQ5BcTGii4gdkho+RSgSdKpQYGRqAgX6x5FbcOeg68ZakRJao94tf3SBm6WwAE6B1x3MT08tAGc4ETgvdVGMCbAQD7FgagUTdy+bnTGnZKgENY2WfXWCu/u7IQGo9kb6tlGCGetWbif95ndSE172MR0lqMGKLj8JUUBPTWTY04MoGYKMIODDF7a6UDUEBMzbBgg3BWz15nTSrFc+teHfVUu1iGUeenJFzckk8ckVq5JbUSYMw8kieySt5c56cF+fd+ViU5pxlzyn5A+fzB/UOnI8=</latexit><latexit sha1_base64="0paHCujhwIfPsDvz42vXBXzrQkE=">AAACDnicbVC7TgMxEPSFVwivACWNRYhEFd2lgTISDWWQyENKomjPt5eY2Hcn2xcpOuULaPgVGgoQoqWm429wHgUkjGRpNLO73h0/EVwb1/12chubW9s7+d3C3v7B4VHx+KSp41QxbLBYxKrtg0bBI2wYbgS2E4UgfYEtf3Qz81tjVJrH0b2ZJNiTMIh4yBkYK/WL5a4OQ5BcTGii4gdkho+RSgSdKpQYGRqAgX6x5FbcOeg68ZakRJao94tf3SBm6WwAE6B1x3MT08tAGc4ETgvdVGMCbAQD7FgagUTdy+bnTGnZKgENY2WfXWCu/u7IQGo9kb6tlGCGetWbif95ndSE172MR0lqMGKLj8JUUBPTWTY04MoGYKMIODDF7a6UDUEBMzbBgg3BWz15nTSrFc+teHfVUu1iGUeenJFzckk8ckVq5JbUSYMw8kieySt5c56cF+fd+ViU5pxlzyn5A+fzB/UOnI8=</latexit><latexit sha1_base64="0paHCujhwIfPsDvz42vXBXzrQkE=">AAACDnicbVC7TgMxEPSFVwivACWNRYhEFd2lgTISDWWQyENKomjPt5eY2Hcn2xcpOuULaPgVGgoQoqWm429wHgUkjGRpNLO73h0/EVwb1/12chubW9s7+d3C3v7B4VHx+KSp41QxbLBYxKrtg0bBI2wYbgS2E4UgfYEtf3Qz81tjVJrH0b2ZJNiTMIh4yBkYK/WL5a4OQ5BcTGii4gdkho+RSgSdKpQYGRqAgX6x5FbcOeg68ZakRJao94tf3SBm6WwAE6B1x3MT08tAGc4ETgvdVGMCbAQD7FgagUTdy+bnTGnZKgENY2WfXWCu/u7IQGo9kb6tlGCGetWbif95ndSE172MR0lqMGKLj8JUUBPTWTY04MoGYKMIODDF7a6UDUEBMzbBgg3BWz15nTSrFc+teHfVUu1iGUeenJFzckk8ckVq5JbUSYMw8kieySt5c56cF+fd+ViU5pxlzyn5A+fzB/UOnI8=</latexit>Symmetry-Protecting Quantum Circuit

<latexit sha1_base64="odkEN1HDCepg4c5Ml+69veiT2HU=">AAACFnicbVDLTgIxFO3gC/GFunTTiCZuIDNsdEnCxiVEeSRASKd0oKHtTNpbkwnhK9z4K25caIxb486/sTwWCp6kyck59+b2nDAR3IDvf3uZjc2t7Z3sbm5v/+DwKH980jSx1ZQ1aCxi3Q6JYYIr1gAOgrUTzYgMBWuF4+rMbz0wbXis7iFNWE+SoeIRpwSc1M8XuyaKiOQixXeplAx0WqzpGBgFroa4bokCK3GVa2o59PMFv+TPgddJsCQFtEStn//qDmJqJVNABTGmE/gJ9CZEA6eCTXNda1hC6JgMWcdRRSQzvck81hRfOmWAo1i7pwDP1d8bEyKNSWXoJiWBkVn1ZuJ/XsdCdNObcJVYYIouDkVWYIjxrCM84Nrld5UMOKGau79iOiKaUHBN5lwJwWrkddIslwK/FNTLhcrFso4sOkPn6AoF6BpV0C2qoQai6BE9o1f05j15L96797EYzXjLnVP0B97nDxyjn9g=</latexit><latexit sha1_base64="odkEN1HDCepg4c5Ml+69veiT2HU=">AAACFnicbVDLTgIxFO3gC/GFunTTiCZuIDNsdEnCxiVEeSRASKd0oKHtTNpbkwnhK9z4K25caIxb486/sTwWCp6kyck59+b2nDAR3IDvf3uZjc2t7Z3sbm5v/+DwKH980jSx1ZQ1aCxi3Q6JYYIr1gAOgrUTzYgMBWuF4+rMbz0wbXis7iFNWE+SoeIRpwSc1M8XuyaKiOQixXeplAx0WqzpGBgFroa4bokCK3GVa2o59PMFv+TPgddJsCQFtEStn//qDmJqJVNABTGmE/gJ9CZEA6eCTXNda1hC6JgMWcdRRSQzvck81hRfOmWAo1i7pwDP1d8bEyKNSWXoJiWBkVn1ZuJ/XsdCdNObcJVYYIouDkVWYIjxrCM84Nrld5UMOKGau79iOiKaUHBN5lwJwWrkddIslwK/FNTLhcrFso4sOkPn6AoF6BpV0C2qoQai6BE9o1f05j15L96797EYzXjLnVP0B97nDxyjn9g=</latexit><latexit sha1_base64="odkEN1HDCepg4c5Ml+69veiT2HU=">AAACFnicbVDLTgIxFO3gC/GFunTTiCZuIDNsdEnCxiVEeSRASKd0oKHtTNpbkwnhK9z4K25caIxb486/sTwWCp6kyck59+b2nDAR3IDvf3uZjc2t7Z3sbm5v/+DwKH980jSx1ZQ1aCxi3Q6JYYIr1gAOgrUTzYgMBWuF4+rMbz0wbXis7iFNWE+SoeIRpwSc1M8XuyaKiOQixXeplAx0WqzpGBgFroa4bokCK3GVa2o59PMFv+TPgddJsCQFtEStn//qDmJqJVNABTGmE/gJ9CZEA6eCTXNda1hC6JgMWcdRRSQzvck81hRfOmWAo1i7pwDP1d8bEyKNSWXoJiWBkVn1ZuJ/XsdCdNObcJVYYIouDkVWYIjxrCM84Nrld5UMOKGau79iOiKaUHBN5lwJwWrkddIslwK/FNTLhcrFso4sOkPn6AoF6BpV0C2qoQai6BE9o1f05j15L96797EYzXjLnVP0B97nDxyjn9g=</latexit><latexit sha1_base64="odkEN1HDCepg4c5Ml+69veiT2HU=">AAACFnicbVDLTgIxFO3gC/GFunTTiCZuIDNsdEnCxiVEeSRASKd0oKHtTNpbkwnhK9z4K25caIxb486/sTwWCp6kyck59+b2nDAR3IDvf3uZjc2t7Z3sbm5v/+DwKH980jSx1ZQ1aCxi3Q6JYYIr1gAOgrUTzYgMBWuF4+rMbz0wbXis7iFNWE+SoeIRpwSc1M8XuyaKiOQixXeplAx0WqzpGBgFroa4bokCK3GVa2o59PMFv+TPgddJsCQFtEStn//qDmJqJVNABTGmE/gJ9CZEA6eCTXNda1hC6JgMWcdRRSQzvck81hRfOmWAo1i7pwDP1d8bEyKNSWXoJiWBkVn1ZuJ/XsdCdNObcJVYYIouDkVWYIjxrCM84Nrld5UMOKGau79iOiKaUHBN5lwJwWrkddIslwK/FNTLhcrFso4sOkPn6AoF6BpV0C2qoQai6BE9o1f05j15L96797EYzXjLnVP0B97nDxyjn9g=</latexit>

cost functions
<latexit sha1_base64="/BqmPZRs/47QOSKQrEZD9Lf8mUk=">AAACCnicbVC7TsMwFHV4lvIKMLIYKhBTlXSBsRILY5HoQ2qiynGc1qrjRPYNooo6s/ArLAwgxMoXsPE3OG0GaDmSpaNzztX1PUEquAbH+bZWVtfWNzYrW9Xtnd29ffvgsKOTTFHWpolIVC8gmgkuWRs4CNZLFSNxIFg3GF8XfveeKc0TeQeTlPkxGUoecUrASAP7xNNRRGIuJtgD9gBBlNNEA44ySYuEng7smlN3ZsDLxC1JDZVoDewvL0xoFjMJVBCt+66Tgp8TBZwKNq16mWYpoWMyZH1DJYmZ9vPZKVN8ZpQQR4kyTwKeqb8nchJrPYkDk4wJjPSiV4j/ef0Mois/5zLNgEk6XxRlAkOCi15wyBWjYGoIOaGKm79iOiKKUDDtVU0J7uLJy6TTqLtO3b1t1JrnZR0VdIxO0QVy0SVqohvUQm1E0SN6Rq/ozXqyXqx362MeXbHKmSP0B9bnD2pwm0E=</latexit><latexit sha1_base64="/BqmPZRs/47QOSKQrEZD9Lf8mUk=">AAACCnicbVC7TsMwFHV4lvIKMLIYKhBTlXSBsRILY5HoQ2qiynGc1qrjRPYNooo6s/ArLAwgxMoXsPE3OG0GaDmSpaNzztX1PUEquAbH+bZWVtfWNzYrW9Xtnd29ffvgsKOTTFHWpolIVC8gmgkuWRs4CNZLFSNxIFg3GF8XfveeKc0TeQeTlPkxGUoecUrASAP7xNNRRGIuJtgD9gBBlNNEA44ySYuEng7smlN3ZsDLxC1JDZVoDewvL0xoFjMJVBCt+66Tgp8TBZwKNq16mWYpoWMyZH1DJYmZ9vPZKVN8ZpQQR4kyTwKeqb8nchJrPYkDk4wJjPSiV4j/ef0Mois/5zLNgEk6XxRlAkOCi15wyBWjYGoIOaGKm79iOiKKUDDtVU0J7uLJy6TTqLtO3b1t1JrnZR0VdIxO0QVy0SVqohvUQm1E0SN6Rq/ozXqyXqx362MeXbHKmSP0B9bnD2pwm0E=</latexit><latexit sha1_base64="/BqmPZRs/47QOSKQrEZD9Lf8mUk=">AAACCnicbVC7TsMwFHV4lvIKMLIYKhBTlXSBsRILY5HoQ2qiynGc1qrjRPYNooo6s/ArLAwgxMoXsPE3OG0GaDmSpaNzztX1PUEquAbH+bZWVtfWNzYrW9Xtnd29ffvgsKOTTFHWpolIVC8gmgkuWRs4CNZLFSNxIFg3GF8XfveeKc0TeQeTlPkxGUoecUrASAP7xNNRRGIuJtgD9gBBlNNEA44ySYuEng7smlN3ZsDLxC1JDZVoDewvL0xoFjMJVBCt+66Tgp8TBZwKNq16mWYpoWMyZH1DJYmZ9vPZKVN8ZpQQR4kyTwKeqb8nchJrPYkDk4wJjPSiV4j/ef0Mois/5zLNgEk6XxRlAkOCi15wyBWjYGoIOaGKm79iOiKKUDDtVU0J7uLJy6TTqLtO3b1t1JrnZR0VdIxO0QVy0SVqohvUQm1E0SN6Rq/ozXqyXqx362MeXbHKmSP0B9bnD2pwm0E=</latexit><latexit sha1_base64="/BqmPZRs/47QOSKQrEZD9Lf8mUk=">AAACCnicbVC7TsMwFHV4lvIKMLIYKhBTlXSBsRILY5HoQ2qiynGc1qrjRPYNooo6s/ArLAwgxMoXsPE3OG0GaDmSpaNzztX1PUEquAbH+bZWVtfWNzYrW9Xtnd29ffvgsKOTTFHWpolIVC8gmgkuWRs4CNZLFSNxIFg3GF8XfveeKc0TeQeTlPkxGUoecUrASAP7xNNRRGIuJtgD9gBBlNNEA44ySYuEng7smlN3ZsDLxC1JDZVoDewvL0xoFjMJVBCt+66Tgp8TBZwKNq16mWYpoWMyZH1DJYmZ9vPZKVN8ZpQQR4kyTwKeqb8nchJrPYkDk4wJjPSiV4j/ef0Mois/5zLNgEk6XxRlAkOCi15wyBWjYGoIOaGKm79iOiKKUDDtVU0J7uLJy6TTqLtO3b1t1JrnZR0VdIxO0QVy0SVqohvUQm1E0SN6Rq/ozXqyXqx362MeXbHKmSP0B9bnD2pwm0E=</latexit>

Rn
1

<latexit sha1_base64="U3rai9fxOCYehdaLRrn+2tLh5gw=">AAACCXicbVC7TsMwFHXKq5RXgJHFokViqpIuMFZiYSyIPqQmRI7jtFZtJ7IdpCrqysKvsDCAECt/wMbf4LQZoOVIlo/OuVf33hOmjCrtON9WZW19Y3Orul3b2d3bP7APj3oqySQmXZywRA5CpAijgnQ11YwMUkkQDxnph5Orwu8/EKloIu70NCU+RyNBY4qRNlJgQ0/FMeKUTWHj9j73woRFasrNl4vZLHAbgV13ms4ccJW4JamDEp3A/vKiBGecCI0ZUmroOqn2cyQ1xYzMal6mSIrwBI3I0FCBOFF+Pr9kBs+MEsE4keYJDefq744ccVWsZyo50mO17BXif94w0/Gln1ORZpoIvBgUZwzqBBaxwIhKgrVJIaIIS2p2hXiMJMLahFczIbjLJ6+SXqvpOk33plVvwzKOKjgBp+AcuOACtME16IAuwOARPINX8GY9WS/Wu/WxKK1YZc8x+APr8weEmJoX</latexit><latexit sha1_base64="U3rai9fxOCYehdaLRrn+2tLh5gw=">AAACCXicbVC7TsMwFHXKq5RXgJHFokViqpIuMFZiYSyIPqQmRI7jtFZtJ7IdpCrqysKvsDCAECt/wMbf4LQZoOVIlo/OuVf33hOmjCrtON9WZW19Y3Orul3b2d3bP7APj3oqySQmXZywRA5CpAijgnQ11YwMUkkQDxnph5Orwu8/EKloIu70NCU+RyNBY4qRNlJgQ0/FMeKUTWHj9j73woRFasrNl4vZLHAbgV13ms4ccJW4JamDEp3A/vKiBGecCI0ZUmroOqn2cyQ1xYzMal6mSIrwBI3I0FCBOFF+Pr9kBs+MEsE4keYJDefq744ccVWsZyo50mO17BXif94w0/Gln1ORZpoIvBgUZwzqBBaxwIhKgrVJIaIIS2p2hXiMJMLahFczIbjLJ6+SXqvpOk33plVvwzKOKjgBp+AcuOACtME16IAuwOARPINX8GY9WS/Wu/WxKK1YZc8x+APr8weEmJoX</latexit><latexit sha1_base64="U3rai9fxOCYehdaLRrn+2tLh5gw=">AAACCXicbVC7TsMwFHXKq5RXgJHFokViqpIuMFZiYSyIPqQmRI7jtFZtJ7IdpCrqysKvsDCAECt/wMbf4LQZoOVIlo/OuVf33hOmjCrtON9WZW19Y3Orul3b2d3bP7APj3oqySQmXZywRA5CpAijgnQ11YwMUkkQDxnph5Orwu8/EKloIu70NCU+RyNBY4qRNlJgQ0/FMeKUTWHj9j73woRFasrNl4vZLHAbgV13ms4ccJW4JamDEp3A/vKiBGecCI0ZUmroOqn2cyQ1xYzMal6mSIrwBI3I0FCBOFF+Pr9kBs+MEsE4keYJDefq744ccVWsZyo50mO17BXif94w0/Gln1ORZpoIvBgUZwzqBBaxwIhKgrVJIaIIS2p2hXiMJMLahFczIbjLJ6+SXqvpOk33plVvwzKOKjgBp+AcuOACtME16IAuwOARPINX8GY9WS/Wu/WxKK1YZc8x+APr8weEmJoX</latexit><latexit sha1_base64="U3rai9fxOCYehdaLRrn+2tLh5gw=">AAACCXicbVC7TsMwFHXKq5RXgJHFokViqpIuMFZiYSyIPqQmRI7jtFZtJ7IdpCrqysKvsDCAECt/wMbf4LQZoOVIlo/OuVf33hOmjCrtON9WZW19Y3Orul3b2d3bP7APj3oqySQmXZywRA5CpAijgnQ11YwMUkkQDxnph5Orwu8/EKloIu70NCU+RyNBY4qRNlJgQ0/FMeKUTWHj9j73woRFasrNl4vZLHAbgV13ms4ccJW4JamDEp3A/vKiBGecCI0ZUmroOqn2cyQ1xYzMal6mSIrwBI3I0FCBOFF+Pr9kBs+MEsE4keYJDefq744ccVWsZyo50mO17BXif94w0/Gln1ORZpoIvBgUZwzqBBaxwIhKgrVJIaIIS2p2hXiMJMLahFczIbjLJ6+SXqvpOk33plVvwzKOKjgBp+AcuOACtME16IAuwOARPINX8GY9WS/Wu/WxKK1YZc8x+APr8weEmJoX</latexit>

Rn
2

<latexit sha1_base64="OP2JkcTCATAqinEv/O5FVEfZoq8=">AAACCXicbVC7TsMwFHXKq5RXgJHFokViqpIuMFZiYSyIPqSmRI7jtFZtJ7IdpCrKysKvsDCAECt/wMbf4LQZoOVIlo/OuVf33hMkjCrtON9WZW19Y3Orul3b2d3bP7APj3oqTiUmXRyzWA4CpAijgnQ11YwMEkkQDxjpB9Orwu8/EKloLO70LCEjjsaCRhQjbSTfhp6KIsQpm8HG7X3mBTEL1YybLxN57rcavl13ms4ccJW4JamDEh3f/vLCGKecCI0ZUmroOokeZUhqihnJa16qSILwFI3J0FCBOFGjbH5JDs+MEsIoluYJDefq744McVWsZyo50hO17BXif94w1dHlKKMiSTUReDEoShnUMSxigSGVBGuTQkgRltTsCvEESYS1Ca9mQnCXT14lvVbTdZruTavehmUcVXACTsE5cMEFaINr0AFdgMEjeAav4M16sl6sd+tjUVqxyp5j8AfW5w+GHZoY</latexit><latexit sha1_base64="OP2JkcTCATAqinEv/O5FVEfZoq8=">AAACCXicbVC7TsMwFHXKq5RXgJHFokViqpIuMFZiYSyIPqSmRI7jtFZtJ7IdpCrKysKvsDCAECt/wMbf4LQZoOVIlo/OuVf33hMkjCrtON9WZW19Y3Orul3b2d3bP7APj3oqTiUmXRyzWA4CpAijgnQ11YwMEkkQDxjpB9Orwu8/EKloLO70LCEjjsaCRhQjbSTfhp6KIsQpm8HG7X3mBTEL1YybLxN57rcavl13ms4ccJW4JamDEh3f/vLCGKecCI0ZUmroOokeZUhqihnJa16qSILwFI3J0FCBOFGjbH5JDs+MEsIoluYJDefq744McVWsZyo50hO17BXif94w1dHlKKMiSTUReDEoShnUMSxigSGVBGuTQkgRltTsCvEESYS1Ca9mQnCXT14lvVbTdZruTavehmUcVXACTsE5cMEFaINr0AFdgMEjeAav4M16sl6sd+tjUVqxyp5j8AfW5w+GHZoY</latexit><latexit sha1_base64="OP2JkcTCATAqinEv/O5FVEfZoq8=">AAACCXicbVC7TsMwFHXKq5RXgJHFokViqpIuMFZiYSyIPqSmRI7jtFZtJ7IdpCrKysKvsDCAECt/wMbf4LQZoOVIlo/OuVf33hMkjCrtON9WZW19Y3Orul3b2d3bP7APj3oqTiUmXRyzWA4CpAijgnQ11YwMEkkQDxjpB9Orwu8/EKloLO70LCEjjsaCRhQjbSTfhp6KIsQpm8HG7X3mBTEL1YybLxN57rcavl13ms4ccJW4JamDEh3f/vLCGKecCI0ZUmroOokeZUhqihnJa16qSILwFI3J0FCBOFGjbH5JDs+MEsIoluYJDefq744McVWsZyo50hO17BXif94w1dHlKKMiSTUReDEoShnUMSxigSGVBGuTQkgRltTsCvEESYS1Ca9mQnCXT14lvVbTdZruTavehmUcVXACTsE5cMEFaINr0AFdgMEjeAav4M16sl6sd+tjUVqxyp5j8AfW5w+GHZoY</latexit><latexit sha1_base64="OP2JkcTCATAqinEv/O5FVEfZoq8=">AAACCXicbVC7TsMwFHXKq5RXgJHFokViqpIuMFZiYSyIPqSmRI7jtFZtJ7IdpCrKysKvsDCAECt/wMbf4LQZoOVIlo/OuVf33hMkjCrtON9WZW19Y3Orul3b2d3bP7APj3oqTiUmXRyzWA4CpAijgnQ11YwMEkkQDxjpB9Orwu8/EKloLO70LCEjjsaCRhQjbSTfhp6KIsQpm8HG7X3mBTEL1YybLxN57rcavl13ms4ccJW4JamDEh3f/vLCGKecCI0ZUmroOokeZUhqihnJa16qSILwFI3J0FCBOFGjbH5JDs+MEsIoluYJDefq744McVWsZyo50hO17BXif94w1dHlKKMiSTUReDEoShnUMSxigSGVBGuTQkgRltTsCvEESYS1Ca9mQnCXT14lvVbTdZruTavehmUcVXACTsE5cMEFaINr0AFdgMEjeAav4M16sl6sd+tjUVqxyp5j8AfW5w+GHZoY</latexit>

Rn
N

<latexit sha1_base64="6i4H17S+2k9Q9X8+k0dAwEtf4Ck=">AAAB/XicbVDNS8MwHE3n15xf9ePmJTgET6MVQY8DL55kivuArZY0TbewNClJKsxS/Fe8eFDEq/+HN/8b060H3XwQ8njv9yMvL0gYVdpxvq3K0vLK6lp1vbaxubW9Y+/udZRIJSZtLJiQvQApwignbU01I71EEhQHjHSD8WXhdx+IVFTwOz1JiBejIacRxUgbybcPbv3r+2wQCBaqSWyujOe5b9edhjMFXCRuSeqgRMu3vwahwGlMuMYMKdV3nUR7GZKaYkby2iBVJEF4jIakbyhHMVFeNk2fw2OjhDAS0hyu4VT9vZGhWBXZzGSM9EjNe4X4n9dPdXThZZQnqSYczx6KUga1gEUVMKSSYM0mhiAsqckK8QhJhLUprGZKcOe/vEg6pw3Xabg3Z/UmLOuogkNwBE6AC85BE1yBFmgDDB7BM3gFb9aT9WK9Wx+z0YpV7uyDP7A+fwA+YZWf</latexit><latexit sha1_base64="6i4H17S+2k9Q9X8+k0dAwEtf4Ck=">AAAB/XicbVDNS8MwHE3n15xf9ePmJTgET6MVQY8DL55kivuArZY0TbewNClJKsxS/Fe8eFDEq/+HN/8b060H3XwQ8njv9yMvL0gYVdpxvq3K0vLK6lp1vbaxubW9Y+/udZRIJSZtLJiQvQApwignbU01I71EEhQHjHSD8WXhdx+IVFTwOz1JiBejIacRxUgbybcPbv3r+2wQCBaqSWyujOe5b9edhjMFXCRuSeqgRMu3vwahwGlMuMYMKdV3nUR7GZKaYkby2iBVJEF4jIakbyhHMVFeNk2fw2OjhDAS0hyu4VT9vZGhWBXZzGSM9EjNe4X4n9dPdXThZZQnqSYczx6KUga1gEUVMKSSYM0mhiAsqckK8QhJhLUprGZKcOe/vEg6pw3Xabg3Z/UmLOuogkNwBE6AC85BE1yBFmgDDB7BM3gFb9aT9WK9Wx+z0YpV7uyDP7A+fwA+YZWf</latexit><latexit sha1_base64="6i4H17S+2k9Q9X8+k0dAwEtf4Ck=">AAAB/XicbVDNS8MwHE3n15xf9ePmJTgET6MVQY8DL55kivuArZY0TbewNClJKsxS/Fe8eFDEq/+HN/8b060H3XwQ8njv9yMvL0gYVdpxvq3K0vLK6lp1vbaxubW9Y+/udZRIJSZtLJiQvQApwignbU01I71EEhQHjHSD8WXhdx+IVFTwOz1JiBejIacRxUgbybcPbv3r+2wQCBaqSWyujOe5b9edhjMFXCRuSeqgRMu3vwahwGlMuMYMKdV3nUR7GZKaYkby2iBVJEF4jIakbyhHMVFeNk2fw2OjhDAS0hyu4VT9vZGhWBXZzGSM9EjNe4X4n9dPdXThZZQnqSYczx6KUga1gEUVMKSSYM0mhiAsqckK8QhJhLUprGZKcOe/vEg6pw3Xabg3Z/UmLOuogkNwBE6AC85BE1yBFmgDDB7BM3gFb9aT9WK9Wx+z0YpV7uyDP7A+fwA+YZWf</latexit><latexit sha1_base64="6i4H17S+2k9Q9X8+k0dAwEtf4Ck=">AAAB/XicbVDNS8MwHE3n15xf9ePmJTgET6MVQY8DL55kivuArZY0TbewNClJKsxS/Fe8eFDEq/+HN/8b060H3XwQ8njv9yMvL0gYVdpxvq3K0vLK6lp1vbaxubW9Y+/udZRIJSZtLJiQvQApwignbU01I71EEhQHjHSD8WXhdx+IVFTwOz1JiBejIacRxUgbybcPbv3r+2wQCBaqSWyujOe5b9edhjMFXCRuSeqgRMu3vwahwGlMuMYMKdV3nUR7GZKaYkby2iBVJEF4jIakbyhHMVFeNk2fw2OjhDAS0hyu4VT9vZGhWBXZzGSM9EjNe4X4n9dPdXThZZQnqSYczx6KUga1gEUVMKSSYM0mhiAsqckK8QhJhLUprGZKcOe/vEg6pw3Xabg3Z/UmLOuogkNwBE6AC85BE1yBFmgDDB7BM3gFb9aT9WK9Wx+z0YpV7uyDP7A+fwA+YZWf</latexit>
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<latexit sha1_base64="DxpWR0mO+oUjItikvb8qiZUxiHY=">AAACH3icbVDLSgNBEJyNrxhfUY9eBhPBU9jNQT0GvHiMYB6QDaF3djYZMvtgpjcQlvyJF3/FiwdFxFv+xtkkB01sGKao6qK7y0uk0Gjbc6uwtb2zu1fcLx0cHh2flE/P2jpOFeMtFstYdT3QXIqIt1Cg5N1EcQg9yTve+D7XOxOutIijJ5wmvB/CMBKBYICGGpRvXB0EEAo5pRNQYsGCpAkoCDkaI626Xix9PQ3Nl7k44giz6qBcsWv2ougmcFagQlbVHJS/XT9macgjZBK07jl2gv0MFAom+azkpponwMYw5D0DIzNd97PFfTN6ZRifBrEyL0K6YH87Mgh1vqDpDAFHel3Lyf+0XorBXT8TUZIij9hyUJBKijHNw6K+UJyhycYXwJQwu1I2MtGwPJmSCcFZP3kTtOs1x645j/VKo7qKo0guyCW5Jg65JQ3yQJqkRRh5Jq/knXxYL9ab9Wl9LVsL1spzTv6UNf8BmMqj0Q==</latexit><latexit sha1_base64="DxpWR0mO+oUjItikvb8qiZUxiHY=">AAACH3icbVDLSgNBEJyNrxhfUY9eBhPBU9jNQT0GvHiMYB6QDaF3djYZMvtgpjcQlvyJF3/FiwdFxFv+xtkkB01sGKao6qK7y0uk0Gjbc6uwtb2zu1fcLx0cHh2flE/P2jpOFeMtFstYdT3QXIqIt1Cg5N1EcQg9yTve+D7XOxOutIijJ5wmvB/CMBKBYICGGpRvXB0EEAo5pRNQYsGCpAkoCDkaI626Xix9PQ3Nl7k44giz6qBcsWv2ougmcFagQlbVHJS/XT9macgjZBK07jl2gv0MFAom+azkpponwMYw5D0DIzNd97PFfTN6ZRifBrEyL0K6YH87Mgh1vqDpDAFHel3Lyf+0XorBXT8TUZIij9hyUJBKijHNw6K+UJyhycYXwJQwu1I2MtGwPJmSCcFZP3kTtOs1x645j/VKo7qKo0guyCW5Jg65JQ3yQJqkRRh5Jq/knXxYL9ab9Wl9LVsL1spzTv6UNf8BmMqj0Q==</latexit><latexit sha1_base64="DxpWR0mO+oUjItikvb8qiZUxiHY=">AAACH3icbVDLSgNBEJyNrxhfUY9eBhPBU9jNQT0GvHiMYB6QDaF3djYZMvtgpjcQlvyJF3/FiwdFxFv+xtkkB01sGKao6qK7y0uk0Gjbc6uwtb2zu1fcLx0cHh2flE/P2jpOFeMtFstYdT3QXIqIt1Cg5N1EcQg9yTve+D7XOxOutIijJ5wmvB/CMBKBYICGGpRvXB0EEAo5pRNQYsGCpAkoCDkaI626Xix9PQ3Nl7k44giz6qBcsWv2ougmcFagQlbVHJS/XT9macgjZBK07jl2gv0MFAom+azkpponwMYw5D0DIzNd97PFfTN6ZRifBrEyL0K6YH87Mgh1vqDpDAFHel3Lyf+0XorBXT8TUZIij9hyUJBKijHNw6K+UJyhycYXwJQwu1I2MtGwPJmSCcFZP3kTtOs1x645j/VKo7qKo0guyCW5Jg65JQ3yQJqkRRh5Jq/knXxYL9ab9Wl9LVsL1spzTv6UNf8BmMqj0Q==</latexit><latexit sha1_base64="DxpWR0mO+oUjItikvb8qiZUxiHY=">AAACH3icbVDLSgNBEJyNrxhfUY9eBhPBU9jNQT0GvHiMYB6QDaF3djYZMvtgpjcQlvyJF3/FiwdFxFv+xtkkB01sGKao6qK7y0uk0Gjbc6uwtb2zu1fcLx0cHh2flE/P2jpOFeMtFstYdT3QXIqIt1Cg5N1EcQg9yTve+D7XOxOutIijJ5wmvB/CMBKBYICGGpRvXB0EEAo5pRNQYsGCpAkoCDkaI626Xix9PQ3Nl7k44giz6qBcsWv2ougmcFagQlbVHJS/XT9macgjZBK07jl2gv0MFAom+azkpponwMYw5D0DIzNd97PFfTN6ZRifBrEyL0K6YH87Mgh1vqDpDAFHel3Lyf+0XorBXT8TUZIij9hyUJBKijHNw6K+UJyhycYXwJQwu1I2MtGwPJmSCcFZP3kTtOs1x645j/VKo7qKo0guyCW5Jg65JQ3yQJqkRRh5Jq/knXxYL9ab9Wl9LVsL1spzTv6UNf8BmMqj0Q==</latexit>

Analog Quantum Simulator
<latexit sha1_base64="3B1HpPVcU9Q+VLusuA/0GeANA8c=">AAACFHicbVC7SkNBEN3r2/iKWtosBkUQwr02Wio2lgZNFJIQ5m72xsV9XHZnxXDJR9j4KzYWitha2Pk3bmIKXwcGDufMMDMnzaVwGMcf0cTk1PTM7Nx8aWFxaXmlvLrWcMZbxuvMSGMvU3BcCs3rKFDyy9xyUKnkF+n18dC/uOHWCaPPsZ/ztoKeFplggEHqlHdbLstACdmnLeS3mGbFkQZperTmQaNX9EwoLwGNHXTKlbgaj0D/kmRMKmSM0075vdU1zCuukUlwrpnEObYLsCiY5INSyzueA7uGHm8GqkFx1y5GTw3oVlC6NDM2lEY6Ur9PFKCc66s0dCrAK/fbG4r/eU2P2UG7EDr3yDX7WpR5SdHQYUK0KyxnGALpCmBWhFspuwILDEOOpRBC8vvlv6SxV03ialLbqxxuj+OYIxtkk+yQhOyTQ3JCTkmdMHJHHsgTeY7uo8foJXr9ap2IxjPr5Aeit0/MsJ8w</latexit><latexit sha1_base64="3B1HpPVcU9Q+VLusuA/0GeANA8c=">AAACFHicbVC7SkNBEN3r2/iKWtosBkUQwr02Wio2lgZNFJIQ5m72xsV9XHZnxXDJR9j4KzYWitha2Pk3bmIKXwcGDufMMDMnzaVwGMcf0cTk1PTM7Nx8aWFxaXmlvLrWcMZbxuvMSGMvU3BcCs3rKFDyy9xyUKnkF+n18dC/uOHWCaPPsZ/ztoKeFplggEHqlHdbLstACdmnLeS3mGbFkQZperTmQaNX9EwoLwGNHXTKlbgaj0D/kmRMKmSM0075vdU1zCuukUlwrpnEObYLsCiY5INSyzueA7uGHm8GqkFx1y5GTw3oVlC6NDM2lEY6Ur9PFKCc66s0dCrAK/fbG4r/eU2P2UG7EDr3yDX7WpR5SdHQYUK0KyxnGALpCmBWhFspuwILDEOOpRBC8vvlv6SxV03ialLbqxxuj+OYIxtkk+yQhOyTQ3JCTkmdMHJHHsgTeY7uo8foJXr9ap2IxjPr5Aeit0/MsJ8w</latexit><latexit sha1_base64="3B1HpPVcU9Q+VLusuA/0GeANA8c=">AAACFHicbVC7SkNBEN3r2/iKWtosBkUQwr02Wio2lgZNFJIQ5m72xsV9XHZnxXDJR9j4KzYWitha2Pk3bmIKXwcGDufMMDMnzaVwGMcf0cTk1PTM7Nx8aWFxaXmlvLrWcMZbxuvMSGMvU3BcCs3rKFDyy9xyUKnkF+n18dC/uOHWCaPPsZ/ztoKeFplggEHqlHdbLstACdmnLeS3mGbFkQZperTmQaNX9EwoLwGNHXTKlbgaj0D/kmRMKmSM0075vdU1zCuukUlwrpnEObYLsCiY5INSyzueA7uGHm8GqkFx1y5GTw3oVlC6NDM2lEY6Ur9PFKCc66s0dCrAK/fbG4r/eU2P2UG7EDr3yDX7WpR5SdHQYUK0KyxnGALpCmBWhFspuwILDEOOpRBC8vvlv6SxV03ialLbqxxuj+OYIxtkk+yQhOyTQ3JCTkmdMHJHHsgTeY7uo8foJXr9ap2IxjPr5Aeit0/MsJ8w</latexit><latexit sha1_base64="3B1HpPVcU9Q+VLusuA/0GeANA8c=">AAACFHicbVC7SkNBEN3r2/iKWtosBkUQwr02Wio2lgZNFJIQ5m72xsV9XHZnxXDJR9j4KzYWitha2Pk3bmIKXwcGDufMMDMnzaVwGMcf0cTk1PTM7Nx8aWFxaXmlvLrWcMZbxuvMSGMvU3BcCs3rKFDyy9xyUKnkF+n18dC/uOHWCaPPsZ/ztoKeFplggEHqlHdbLstACdmnLeS3mGbFkQZperTmQaNX9EwoLwGNHXTKlbgaj0D/kmRMKmSM0075vdU1zCuukUlwrpnEObYLsCiY5INSyzueA7uGHm8GqkFx1y5GTw3oVlC6NDM2lEY6Ur9PFKCc66s0dCrAK/fbG4r/eU2P2UG7EDr3yDX7WpR5SdHQYUK0KyxnGALpCmBWhFspuwILDEOOpRBC8vvlv6SxV03ialLbqxxuj+OYIxtkk+yQhOyTQ3JCTkmdMHJHHsgTeY7uo8foJXr9ap2IxjPr5Aeit0/MsJ8w</latexit>

| 0i
<latexit sha1_base64="Zj7yhpARyNRamCwI4iAL1Pv2K1A=">AAACCXicbZBLTgJBEIZ78IX4Ql266QgaV2SGjS5J3LjERB4JjKSnqYEOPY9015iQyZzAC7jVG7gzbj2FF/AcNjALAf+kkj9/VaUqnxdLodG2v63CxubW9k5xt7S3f3B4VD4+aesoURxaPJKR6npMgxQhtFCghG6sgAWehI43uZ31O0+gtIjCB5zG4AZsFApfcIYmeqz2J4Bpv6nFwM6qg3LFrtlz0XXj5KZCcjUH5Z/+MOJJACFyybTuOXaMbsoUCi4hK/UTDTHjEzaCnrEhC0C76fzrjF6YZEj9SJkKkc7TvxspC7SeBp6ZDBiO9WpvFv7X6yXo37ipCOMEIeSLQ34iKUZ0hoAOhQKOcmoM40qYXykfM8U4GlBLVzzFDJ+sZMA4qxjWTbtec+yac1+vNC5zREVyRs7JFXHINWmQO9IkLcKJIi/klbxZz9a79WF9LkYLVr5zSpZkff0CIQiaRw==</latexit><latexit sha1_base64="Zj7yhpARyNRamCwI4iAL1Pv2K1A=">AAACCXicbZBLTgJBEIZ78IX4Ql266QgaV2SGjS5J3LjERB4JjKSnqYEOPY9015iQyZzAC7jVG7gzbj2FF/AcNjALAf+kkj9/VaUqnxdLodG2v63CxubW9k5xt7S3f3B4VD4+aesoURxaPJKR6npMgxQhtFCghG6sgAWehI43uZ31O0+gtIjCB5zG4AZsFApfcIYmeqz2J4Bpv6nFwM6qg3LFrtlz0XXj5KZCcjUH5Z/+MOJJACFyybTuOXaMbsoUCi4hK/UTDTHjEzaCnrEhC0C76fzrjF6YZEj9SJkKkc7TvxspC7SeBp6ZDBiO9WpvFv7X6yXo37ipCOMEIeSLQ34iKUZ0hoAOhQKOcmoM40qYXykfM8U4GlBLVzzFDJ+sZMA4qxjWTbtec+yac1+vNC5zREVyRs7JFXHINWmQO9IkLcKJIi/klbxZz9a79WF9LkYLVr5zSpZkff0CIQiaRw==</latexit><latexit sha1_base64="Zj7yhpARyNRamCwI4iAL1Pv2K1A=">AAACCXicbZBLTgJBEIZ78IX4Ql266QgaV2SGjS5J3LjERB4JjKSnqYEOPY9015iQyZzAC7jVG7gzbj2FF/AcNjALAf+kkj9/VaUqnxdLodG2v63CxubW9k5xt7S3f3B4VD4+aesoURxaPJKR6npMgxQhtFCghG6sgAWehI43uZ31O0+gtIjCB5zG4AZsFApfcIYmeqz2J4Bpv6nFwM6qg3LFrtlz0XXj5KZCcjUH5Z/+MOJJACFyybTuOXaMbsoUCi4hK/UTDTHjEzaCnrEhC0C76fzrjF6YZEj9SJkKkc7TvxspC7SeBp6ZDBiO9WpvFv7X6yXo37ipCOMEIeSLQ34iKUZ0hoAOhQKOcmoM40qYXykfM8U4GlBLVzzFDJ+sZMA4qxjWTbtec+yac1+vNC5zREVyRs7JFXHINWmQO9IkLcKJIi/klbxZz9a79WF9LkYLVr5zSpZkff0CIQiaRw==</latexit><latexit sha1_base64="Zj7yhpARyNRamCwI4iAL1Pv2K1A=">AAACCXicbZBLTgJBEIZ78IX4Ql266QgaV2SGjS5J3LjERB4JjKSnqYEOPY9015iQyZzAC7jVG7gzbj2FF/AcNjALAf+kkj9/VaUqnxdLodG2v63CxubW9k5xt7S3f3B4VD4+aesoURxaPJKR6npMgxQhtFCghG6sgAWehI43uZ31O0+gtIjCB5zG4AZsFApfcIYmeqz2J4Bpv6nFwM6qg3LFrtlz0XXj5KZCcjUH5Z/+MOJJACFyybTuOXaMbsoUCi4hK/UTDTHjEzaCnrEhC0C76fzrjF6YZEj9SJkKkc7TvxspC7SeBp6ZDBiO9WpvFv7X6yXo37ipCOMEIeSLQ34iKUZ0hoAOhQKOcmoM40qYXykfM8U4GlBLVzzFDJ+sZMA4qxjWTbtec+yac1+vNC5zREVyRs7JFXHINWmQO9IkLcKJIi/klbxZz9a79WF9LkYLVr5zSpZkff0CIQiaRw==</latexit>

|"i
<latexit sha1_base64="usRTBWYGKmEOV3LUkVb1yEsdQN4=">AAACDXicbZBLSgNBEIZrfMb4GnXppjEKrsKMCLoMuHEZwTwgGUJPpydp0tM9dPdEwjBn8AJu9QbuxK1n8AKew04yC5P4Q8HPX1VU8YUJZ9p43reztr6xubVd2inv7u0fHLpHx00tU0Vog0guVTvEmnImaMMww2k7URTHIaetcHQ37bfGVGkmxaOZJDSI8UCwiBFsbNRz3e6Imgx10wQrJZ9Q3nMrXtWbCa0avzAVKFTvuT/dviRpTIUhHGvd8b3EBBlWhhFO83I31TTBZIQHtGOtwDHVQTb7PEcXNumjSCpbwqBZ+ncjw7HWkzi0kzE2Q73cm4b/9TqpiW6DjIkkNVSQ+aEo5chINMWA+kxRYvjEGkwUs78iMsQKE2NhLVwJFbaI8rIF4y9jWDXNq6rvVf2H60rtvEBUglM4g0vw4QZqcA91aACBMbzAK7w5z8678+F8zkfXnGLnBBbkfP0CBmyb2Q==</latexit><latexit sha1_base64="usRTBWYGKmEOV3LUkVb1yEsdQN4=">AAACDXicbZBLSgNBEIZrfMb4GnXppjEKrsKMCLoMuHEZwTwgGUJPpydp0tM9dPdEwjBn8AJu9QbuxK1n8AKew04yC5P4Q8HPX1VU8YUJZ9p43reztr6xubVd2inv7u0fHLpHx00tU0Vog0guVTvEmnImaMMww2k7URTHIaetcHQ37bfGVGkmxaOZJDSI8UCwiBFsbNRz3e6Imgx10wQrJZ9Q3nMrXtWbCa0avzAVKFTvuT/dviRpTIUhHGvd8b3EBBlWhhFO83I31TTBZIQHtGOtwDHVQTb7PEcXNumjSCpbwqBZ+ncjw7HWkzi0kzE2Q73cm4b/9TqpiW6DjIkkNVSQ+aEo5chINMWA+kxRYvjEGkwUs78iMsQKE2NhLVwJFbaI8rIF4y9jWDXNq6rvVf2H60rtvEBUglM4g0vw4QZqcA91aACBMbzAK7w5z8678+F8zkfXnGLnBBbkfP0CBmyb2Q==</latexit><latexit sha1_base64="usRTBWYGKmEOV3LUkVb1yEsdQN4=">AAACDXicbZBLSgNBEIZrfMb4GnXppjEKrsKMCLoMuHEZwTwgGUJPpydp0tM9dPdEwjBn8AJu9QbuxK1n8AKew04yC5P4Q8HPX1VU8YUJZ9p43reztr6xubVd2inv7u0fHLpHx00tU0Vog0guVTvEmnImaMMww2k7URTHIaetcHQ37bfGVGkmxaOZJDSI8UCwiBFsbNRz3e6Imgx10wQrJZ9Q3nMrXtWbCa0avzAVKFTvuT/dviRpTIUhHGvd8b3EBBlWhhFO83I31TTBZIQHtGOtwDHVQTb7PEcXNumjSCpbwqBZ+ncjw7HWkzi0kzE2Q73cm4b/9TqpiW6DjIkkNVSQ+aEo5chINMWA+kxRYvjEGkwUs78iMsQKE2NhLVwJFbaI8rIF4y9jWDXNq6rvVf2H60rtvEBUglM4g0vw4QZqcA91aACBMbzAK7w5z8678+F8zkfXnGLnBBbkfP0CBmyb2Q==</latexit><latexit sha1_base64="usRTBWYGKmEOV3LUkVb1yEsdQN4=">AAACDXicbZBLSgNBEIZrfMb4GnXppjEKrsKMCLoMuHEZwTwgGUJPpydp0tM9dPdEwjBn8AJu9QbuxK1n8AKew04yC5P4Q8HPX1VU8YUJZ9p43reztr6xubVd2inv7u0fHLpHx00tU0Vog0guVTvEmnImaMMww2k7URTHIaetcHQ37bfGVGkmxaOZJDSI8UCwiBFsbNRz3e6Imgx10wQrJZ9Q3nMrXtWbCa0avzAVKFTvuT/dviRpTIUhHGvd8b3EBBlWhhFO83I31TTBZIQHtGOtwDHVQTb7PEcXNumjSCpbwqBZ+ncjw7HWkzi0kzE2Q73cm4b/9TqpiW6DjIkkNVSQ+aEo5chINMWA+kxRYvjEGkwUs78iMsQKE2NhLVwJFbaI8rIF4y9jWDXNq6rvVf2H60rtvEBUglM4g0vw4QZqcA91aACBMbzAK7w5z8678+F8zkfXnGLnBBbkfP0CBmyb2Q==</latexit>

|#i
<latexit sha1_base64="FjtV2qjDwM1jYxZz3ftmfPA+oUU=">AAACD3icbVBLSgNBFHzjN8bfGJduGqPgKsyIoMuAG5cRzAeSIfR0epImPd1Dd48xDDmEF3CrN3Anbj2CF/AcdpJZmMSCB0XVK96jwoQzbTzv21lb39jc2i7sFHf39g8O3aNSQ8tUEVonkkvVCrGmnAlaN8xw2koUxXHIaTMc3k795iNVmknxYMYJDWLcFyxiBBsrdd1SZ0hNhjo9ORJYKTlCk65b9ireDGiV+DkpQ45a1/2xcZLGVBjCsdZt30tMkGFlGOF0UuykmiaYDHGfti0VOKY6yGa/T9C5VXooksqOMGim/k1kONZ6HId2M8ZmoJe9qfif105NdBNkTCSpoYLMD0UpR0aiaRGoxxQlho8twUQx+ysiA6wwMbauhSuhwrakSdEW4y/XsEoalxXfq/j3V+XqWV5RAU7gFC7Ah2uowh3UoA4EnuAFXuHNeXbenQ/nc7665uSZY1iA8/ULri6cwA==</latexit><latexit sha1_base64="FjtV2qjDwM1jYxZz3ftmfPA+oUU=">AAACD3icbVBLSgNBFHzjN8bfGJduGqPgKsyIoMuAG5cRzAeSIfR0epImPd1Dd48xDDmEF3CrN3Anbj2CF/AcdpJZmMSCB0XVK96jwoQzbTzv21lb39jc2i7sFHf39g8O3aNSQ8tUEVonkkvVCrGmnAlaN8xw2koUxXHIaTMc3k795iNVmknxYMYJDWLcFyxiBBsrdd1SZ0hNhjo9ORJYKTlCk65b9ireDGiV+DkpQ45a1/2xcZLGVBjCsdZt30tMkGFlGOF0UuykmiaYDHGfti0VOKY6yGa/T9C5VXooksqOMGim/k1kONZ6HId2M8ZmoJe9qfif105NdBNkTCSpoYLMD0UpR0aiaRGoxxQlho8twUQx+ysiA6wwMbauhSuhwrakSdEW4y/XsEoalxXfq/j3V+XqWV5RAU7gFC7Ah2uowh3UoA4EnuAFXuHNeXbenQ/nc7665uSZY1iA8/ULri6cwA==</latexit><latexit sha1_base64="FjtV2qjDwM1jYxZz3ftmfPA+oUU=">AAACD3icbVBLSgNBFHzjN8bfGJduGqPgKsyIoMuAG5cRzAeSIfR0epImPd1Dd48xDDmEF3CrN3Anbj2CF/AcdpJZmMSCB0XVK96jwoQzbTzv21lb39jc2i7sFHf39g8O3aNSQ8tUEVonkkvVCrGmnAlaN8xw2koUxXHIaTMc3k795iNVmknxYMYJDWLcFyxiBBsrdd1SZ0hNhjo9ORJYKTlCk65b9ireDGiV+DkpQ45a1/2xcZLGVBjCsdZt30tMkGFlGOF0UuykmiaYDHGfti0VOKY6yGa/T9C5VXooksqOMGim/k1kONZ6HId2M8ZmoJe9qfif105NdBNkTCSpoYLMD0UpR0aiaRGoxxQlho8twUQx+ysiA6wwMbauhSuhwrakSdEW4y/XsEoalxXfq/j3V+XqWV5RAU7gFC7Ah2uowh3UoA4EnuAFXuHNeXbenQ/nc7665uSZY1iA8/ULri6cwA==</latexit><latexit sha1_base64="FjtV2qjDwM1jYxZz3ftmfPA+oUU=">AAACD3icbVBLSgNBFHzjN8bfGJduGqPgKsyIoMuAG5cRzAeSIfR0epImPd1Dd48xDDmEF3CrN3Anbj2CF/AcdpJZmMSCB0XVK96jwoQzbTzv21lb39jc2i7sFHf39g8O3aNSQ8tUEVonkkvVCrGmnAlaN8xw2koUxXHIaTMc3k795iNVmknxYMYJDWLcFyxiBBsrdd1SZ0hNhjo9ORJYKTlCk65b9ireDGiV+DkpQ45a1/2xcZLGVBjCsdZt30tMkGFlGOF0UuykmiaYDHGfti0VOKY6yGa/T9C5VXooksqOMGim/k1kONZ6HId2M8ZmoJe9qfif105NdBNkTCSpoYLMD0UpR0aiaRGoxxQlho8twUQx+ysiA6wwMbauhSuhwrakSdEW4y/XsEoalxXfq/j3V+XqWV5RAU7gFC7Ah2uowh3UoA4EnuAFXuHNeXbenQ/nc7665uSZY1iA8/ULri6cwA==</latexit>

|#i
<latexit sha1_base64="FjtV2qjDwM1jYxZz3ftmfPA+oUU=">AAACD3icbVBLSgNBFHzjN8bfGJduGqPgKsyIoMuAG5cRzAeSIfR0epImPd1Dd48xDDmEF3CrN3Anbj2CF/AcdpJZmMSCB0XVK96jwoQzbTzv21lb39jc2i7sFHf39g8O3aNSQ8tUEVonkkvVCrGmnAlaN8xw2koUxXHIaTMc3k795iNVmknxYMYJDWLcFyxiBBsrdd1SZ0hNhjo9ORJYKTlCk65b9ireDGiV+DkpQ45a1/2xcZLGVBjCsdZt30tMkGFlGOF0UuykmiaYDHGfti0VOKY6yGa/T9C5VXooksqOMGim/k1kONZ6HId2M8ZmoJe9qfif105NdBNkTCSpoYLMD0UpR0aiaRGoxxQlho8twUQx+ysiA6wwMbauhSuhwrakSdEW4y/XsEoalxXfq/j3V+XqWV5RAU7gFC7Ah2uowh3UoA4EnuAFXuHNeXbenQ/nc7665uSZY1iA8/ULri6cwA==</latexit><latexit sha1_base64="FjtV2qjDwM1jYxZz3ftmfPA+oUU=">AAACD3icbVBLSgNBFHzjN8bfGJduGqPgKsyIoMuAG5cRzAeSIfR0epImPd1Dd48xDDmEF3CrN3Anbj2CF/AcdpJZmMSCB0XVK96jwoQzbTzv21lb39jc2i7sFHf39g8O3aNSQ8tUEVonkkvVCrGmnAlaN8xw2koUxXHIaTMc3k795iNVmknxYMYJDWLcFyxiBBsrdd1SZ0hNhjo9ORJYKTlCk65b9ireDGiV+DkpQ45a1/2xcZLGVBjCsdZt30tMkGFlGOF0UuykmiaYDHGfti0VOKY6yGa/T9C5VXooksqOMGim/k1kONZ6HId2M8ZmoJe9qfif105NdBNkTCSpoYLMD0UpR0aiaRGoxxQlho8twUQx+ysiA6wwMbauhSuhwrakSdEW4y/XsEoalxXfq/j3V+XqWV5RAU7gFC7Ah2uowh3UoA4EnuAFXuHNeXbenQ/nc7665uSZY1iA8/ULri6cwA==</latexit><latexit sha1_base64="FjtV2qjDwM1jYxZz3ftmfPA+oUU=">AAACD3icbVBLSgNBFHzjN8bfGJduGqPgKsyIoMuAG5cRzAeSIfR0epImPd1Dd48xDDmEF3CrN3Anbj2CF/AcdpJZmMSCB0XVK96jwoQzbTzv21lb39jc2i7sFHf39g8O3aNSQ8tUEVonkkvVCrGmnAlaN8xw2koUxXHIaTMc3k795iNVmknxYMYJDWLcFyxiBBsrdd1SZ0hNhjo9ORJYKTlCk65b9ireDGiV+DkpQ45a1/2xcZLGVBjCsdZt30tMkGFlGOF0UuykmiaYDHGfti0VOKY6yGa/T9C5VXooksqOMGim/k1kONZ6HId2M8ZmoJe9qfif105NdBNkTCSpoYLMD0UpR0aiaRGoxxQlho8twUQx+ysiA6wwMbauhSuhwrakSdEW4y/XsEoalxXfq/j3V+XqWV5RAU7gFC7Ah2uowh3UoA4EnuAFXuHNeXbenQ/nc7665uSZY1iA8/ULri6cwA==</latexit><latexit sha1_base64="FjtV2qjDwM1jYxZz3ftmfPA+oUU=">AAACD3icbVBLSgNBFHzjN8bfGJduGqPgKsyIoMuAG5cRzAeSIfR0epImPd1Dd48xDDmEF3CrN3Anbj2CF/AcdpJZmMSCB0XVK96jwoQzbTzv21lb39jc2i7sFHf39g8O3aNSQ8tUEVonkkvVCrGmnAlaN8xw2koUxXHIaTMc3k795iNVmknxYMYJDWLcFyxiBBsrdd1SZ0hNhjo9ORJYKTlCk65b9ireDGiV+DkpQ45a1/2xcZLGVBjCsdZt30tMkGFlGOF0UuykmiaYDHGfti0VOKY6yGa/T9C5VXooksqOMGim/k1kONZ6HId2M8ZmoJe9qfif105NdBNkTCSpoYLMD0UpR0aiaRGoxxQlho8twUQx+ysiA6wwMbauhSuhwrakSdEW4y/XsEoalxXfq/j3V+XqWV5RAU7gFC7Ah2uowh3UoA4EnuAFXuHNeXbenQ/nc7665uSZY1iA8/ULri6cwA==</latexit>

U (N)
R

<latexit sha1_base64="/sALLS8q+YLuy7Lks1gEuGEAzpw=">AAAB/nicbVBNS8NAEN34WetXVDx5WWyFeilJL3osePEkVUxbaGPYbDbt0t1N2N0IJRT8K148KOLV3+HNf+O2zUFbHww83pthZl6YMqq043xbK6tr6xubpa3y9s7u3r59cNhWSSYx8XDCEtkNkSKMCuJpqhnpppIgHjLSCUdXU7/zSKSiibjX45T4HA0EjSlG2kiBfdxXcYw4ZWNY9YK7h7x2cz6pBnbFqTszwGXiFqQCCrQC+6sfJTjjRGjMkFI910m1nyOpKWZkUu5niqQIj9CA9AwViBPl57PzJ/DMKBGME2lKaDhTf0/kiCs15qHp5EgP1aI3Ff/zepmOL/2cijTTROD5ojhjUCdwmgWMqCRYm9cjirCk5laIh0girE1iZROCu/jyMmk36q5Td28blSYs4iiBE3AKasAFF6AJrkELeACDHDyDV/BmPVkv1rv1MW9dsYqZI/AH1ucPkmeUcw==</latexit><latexit sha1_base64="/sALLS8q+YLuy7Lks1gEuGEAzpw=">AAAB/nicbVBNS8NAEN34WetXVDx5WWyFeilJL3osePEkVUxbaGPYbDbt0t1N2N0IJRT8K148KOLV3+HNf+O2zUFbHww83pthZl6YMqq043xbK6tr6xubpa3y9s7u3r59cNhWSSYx8XDCEtkNkSKMCuJpqhnpppIgHjLSCUdXU7/zSKSiibjX45T4HA0EjSlG2kiBfdxXcYw4ZWNY9YK7h7x2cz6pBnbFqTszwGXiFqQCCrQC+6sfJTjjRGjMkFI910m1nyOpKWZkUu5niqQIj9CA9AwViBPl57PzJ/DMKBGME2lKaDhTf0/kiCs15qHp5EgP1aI3Ff/zepmOL/2cijTTROD5ojhjUCdwmgWMqCRYm9cjirCk5laIh0girE1iZROCu/jyMmk36q5Td28blSYs4iiBE3AKasAFF6AJrkELeACDHDyDV/BmPVkv1rv1MW9dsYqZI/AH1ucPkmeUcw==</latexit><latexit sha1_base64="/sALLS8q+YLuy7Lks1gEuGEAzpw=">AAAB/nicbVBNS8NAEN34WetXVDx5WWyFeilJL3osePEkVUxbaGPYbDbt0t1N2N0IJRT8K148KOLV3+HNf+O2zUFbHww83pthZl6YMqq043xbK6tr6xubpa3y9s7u3r59cNhWSSYx8XDCEtkNkSKMCuJpqhnpppIgHjLSCUdXU7/zSKSiibjX45T4HA0EjSlG2kiBfdxXcYw4ZWNY9YK7h7x2cz6pBnbFqTszwGXiFqQCCrQC+6sfJTjjRGjMkFI910m1nyOpKWZkUu5niqQIj9CA9AwViBPl57PzJ/DMKBGME2lKaDhTf0/kiCs15qHp5EgP1aI3Ff/zepmOL/2cijTTROD5ojhjUCdwmgWMqCRYm9cjirCk5laIh0girE1iZROCu/jyMmk36q5Td28blSYs4iiBE3AKasAFF6AJrkELeACDHDyDV/BmPVkv1rv1MW9dsYqZI/AH1ucPkmeUcw==</latexit><latexit sha1_base64="/sALLS8q+YLuy7Lks1gEuGEAzpw=">AAAB/nicbVBNS8NAEN34WetXVDx5WWyFeilJL3osePEkVUxbaGPYbDbt0t1N2N0IJRT8K148KOLV3+HNf+O2zUFbHww83pthZl6YMqq043xbK6tr6xubpa3y9s7u3r59cNhWSSYx8XDCEtkNkSKMCuJpqhnpppIgHjLSCUdXU7/zSKSiibjX45T4HA0EjSlG2kiBfdxXcYw4ZWNY9YK7h7x2cz6pBnbFqTszwGXiFqQCCrQC+6sfJTjjRGjMkFI910m1nyOpKWZkUu5niqQIj9CA9AwViBPl57PzJ/DMKBGME2lKaDhTf0/kiCs15qHp5EgP1aI3Ff/zepmOL/2cijTTROD5ojhjUCdwmgWMqCRYm9cjirCk5laIh0girE1iZROCu/jyMmk36q5Td28blSYs4iiBE3AKasAFF6AJrkELeACDHDyDV/BmPVkv1rv1MW9dsYqZI/AH1ucPkmeUcw==</latexit>

U (1)
R

<latexit sha1_base64="RpltUt5An+UGzaGs0HXG3F80wNk=">AAAB/nicbVBNS8NAEN3Ur1q/ouLJy2Ir1EtJetFjwYvHKqYttDFsNpt26e4m7G6EEgr+FS8eFPHq7/Dmv3Hb5qCtDwYe780wMy9MGVXacb6t0tr6xuZWebuys7u3f2AfHnVUkklMPJywRPZCpAijgniaakZ6qSSIh4x0w/H1zO8+EqloIu71JCU+R0NBY4qRNlJgnwxUHCNO2QTWvODuIa+7F9NaYFedhjMHXCVuQaqgQDuwvwZRgjNOhMYMKdV3nVT7OZKaYkamlUGmSIrwGA1J31CBOFF+Pj9/Cs+NEsE4kaaEhnP190SOuFITHppOjvRILXsz8T+vn+n4ys+pSDNNBF4sijMGdQJnWcCISoK1eT2iCEtqboV4hCTC2iRWMSG4yy+vkk6z4ToN97ZZbcEijjI4BWegDlxwCVrgBrSBBzDIwTN4BW/Wk/VivVsfi9aSVcwcgz+wPn8AZhyUVg==</latexit><latexit sha1_base64="RpltUt5An+UGzaGs0HXG3F80wNk=">AAAB/nicbVBNS8NAEN3Ur1q/ouLJy2Ir1EtJetFjwYvHKqYttDFsNpt26e4m7G6EEgr+FS8eFPHq7/Dmv3Hb5qCtDwYe780wMy9MGVXacb6t0tr6xuZWebuys7u3f2AfHnVUkklMPJywRPZCpAijgniaakZ6qSSIh4x0w/H1zO8+EqloIu71JCU+R0NBY4qRNlJgnwxUHCNO2QTWvODuIa+7F9NaYFedhjMHXCVuQaqgQDuwvwZRgjNOhMYMKdV3nVT7OZKaYkamlUGmSIrwGA1J31CBOFF+Pj9/Cs+NEsE4kaaEhnP190SOuFITHppOjvRILXsz8T+vn+n4ys+pSDNNBF4sijMGdQJnWcCISoK1eT2iCEtqboV4hCTC2iRWMSG4yy+vkk6z4ToN97ZZbcEijjI4BWegDlxwCVrgBrSBBzDIwTN4BW/Wk/VivVsfi9aSVcwcgz+wPn8AZhyUVg==</latexit><latexit sha1_base64="RpltUt5An+UGzaGs0HXG3F80wNk=">AAAB/nicbVBNS8NAEN3Ur1q/ouLJy2Ir1EtJetFjwYvHKqYttDFsNpt26e4m7G6EEgr+FS8eFPHq7/Dmv3Hb5qCtDwYe780wMy9MGVXacb6t0tr6xuZWebuys7u3f2AfHnVUkklMPJywRPZCpAijgniaakZ6qSSIh4x0w/H1zO8+EqloIu71JCU+R0NBY4qRNlJgnwxUHCNO2QTWvODuIa+7F9NaYFedhjMHXCVuQaqgQDuwvwZRgjNOhMYMKdV3nVT7OZKaYkamlUGmSIrwGA1J31CBOFF+Pj9/Cs+NEsE4kaaEhnP190SOuFITHppOjvRILXsz8T+vn+n4ys+pSDNNBF4sijMGdQJnWcCISoK1eT2iCEtqboV4hCTC2iRWMSG4yy+vkk6z4ToN97ZZbcEijjI4BWegDlxwCVrgBrSBBzDIwTN4BW/Wk/VivVsfi9aSVcwcgz+wPn8AZhyUVg==</latexit><latexit sha1_base64="RpltUt5An+UGzaGs0HXG3F80wNk=">AAAB/nicbVBNS8NAEN3Ur1q/ouLJy2Ir1EtJetFjwYvHKqYttDFsNpt26e4m7G6EEgr+FS8eFPHq7/Dmv3Hb5qCtDwYe780wMy9MGVXacb6t0tr6xuZWebuys7u3f2AfHnVUkklMPJywRPZCpAijgniaakZ6qSSIh4x0w/H1zO8+EqloIu71JCU+R0NBY4qRNlJgnwxUHCNO2QTWvODuIa+7F9NaYFedhjMHXCVuQaqgQDuwvwZRgjNOhMYMKdV3nVT7OZKaYkamlUGmSIrwGA1J31CBOFF+Pj9/Cs+NEsE4kaaEhnP190SOuFITHppOjvRILXsz8T+vn+n4ys+pSDNNBF4sijMGdQJnWcCISoK1eT2iCEtqboV4hCTC2iRWMSG4yy+vkk6z4ToN97ZZbcEijjI4BWegDlxwCVrgBrSBBzDIwTN4BW/Wk/VivVsfi9aSVcwcgz+wPn8AZhyUVg==</latexit>

U (2)
R

<latexit sha1_base64="//EKsMTq5iMM1t+LPBEfAmbcZc0=">AAAB/nicbVBNS8NAEN3Ur1q/ouLJy2Ir1EtJetFjwYvHKqYttDFsNpt26e4m7G6EEgr+FS8eFPHq7/Dmv3Hb5qCtDwYe780wMy9MGVXacb6t0tr6xuZWebuys7u3f2AfHnVUkklMPJywRPZCpAijgniaakZ6qSSIh4x0w/H1zO8+EqloIu71JCU+R0NBY4qRNlJgnwxUHCNO2QTWvODuIa83L6a1wK46DWcOuErcglRBgXZgfw2iBGecCI0ZUqrvOqn2cyQ1xYxMK4NMkRThMRqSvqECcaL8fH7+FJ4bJYJxIk0JDefq74kccaUmPDSdHOmRWvZm4n9eP9PxlZ9TkWaaCLxYFGcM6gTOsoARlQRr83pEEZbU3ArxCEmEtUmsYkJwl19eJZ1mw3Ua7m2z2oJFHGVwCs5AHbjgErTADWgDD2CQg2fwCt6sJ+vFerc+Fq0lq5g5Bn9gff4AZ6OUVw==</latexit><latexit sha1_base64="//EKsMTq5iMM1t+LPBEfAmbcZc0=">AAAB/nicbVBNS8NAEN3Ur1q/ouLJy2Ir1EtJetFjwYvHKqYttDFsNpt26e4m7G6EEgr+FS8eFPHq7/Dmv3Hb5qCtDwYe780wMy9MGVXacb6t0tr6xuZWebuys7u3f2AfHnVUkklMPJywRPZCpAijgniaakZ6qSSIh4x0w/H1zO8+EqloIu71JCU+R0NBY4qRNlJgnwxUHCNO2QTWvODuIa83L6a1wK46DWcOuErcglRBgXZgfw2iBGecCI0ZUqrvOqn2cyQ1xYxMK4NMkRThMRqSvqECcaL8fH7+FJ4bJYJxIk0JDefq74kccaUmPDSdHOmRWvZm4n9eP9PxlZ9TkWaaCLxYFGcM6gTOsoARlQRr83pEEZbU3ArxCEmEtUmsYkJwl19eJZ1mw3Ua7m2z2oJFHGVwCs5AHbjgErTADWgDD2CQg2fwCt6sJ+vFerc+Fq0lq5g5Bn9gff4AZ6OUVw==</latexit><latexit sha1_base64="//EKsMTq5iMM1t+LPBEfAmbcZc0=">AAAB/nicbVBNS8NAEN3Ur1q/ouLJy2Ir1EtJetFjwYvHKqYttDFsNpt26e4m7G6EEgr+FS8eFPHq7/Dmv3Hb5qCtDwYe780wMy9MGVXacb6t0tr6xuZWebuys7u3f2AfHnVUkklMPJywRPZCpAijgniaakZ6qSSIh4x0w/H1zO8+EqloIu71JCU+R0NBY4qRNlJgnwxUHCNO2QTWvODuIa83L6a1wK46DWcOuErcglRBgXZgfw2iBGecCI0ZUqrvOqn2cyQ1xYxMK4NMkRThMRqSvqECcaL8fH7+FJ4bJYJxIk0JDefq74kccaUmPDSdHOmRWvZm4n9eP9PxlZ9TkWaaCLxYFGcM6gTOsoARlQRr83pEEZbU3ArxCEmEtUmsYkJwl19eJZ1mw3Ua7m2z2oJFHGVwCs5AHbjgErTADWgDD2CQg2fwCt6sJ+vFerc+Fq0lq5g5Bn9gff4AZ6OUVw==</latexit><latexit sha1_base64="//EKsMTq5iMM1t+LPBEfAmbcZc0=">AAAB/nicbVBNS8NAEN3Ur1q/ouLJy2Ir1EtJetFjwYvHKqYttDFsNpt26e4m7G6EEgr+FS8eFPHq7/Dmv3Hb5qCtDwYe780wMy9MGVXacb6t0tr6xuZWebuys7u3f2AfHnVUkklMPJywRPZCpAijgniaakZ6qSSIh4x0w/H1zO8+EqloIu71JCU+R0NBY4qRNlJgnwxUHCNO2QTWvODuIa83L6a1wK46DWcOuErcglRBgXZgfw2iBGecCI0ZUqrvOqn2cyQ1xYxMK4NMkRThMRqSvqECcaL8fH7+FJ4bJYJxIk0JDefq74kccaUmPDSdHOmRWvZm4n9eP9PxlZ9TkWaaCLxYFGcM6gTOsoARlQRr83pEEZbU3ArxCEmEtUmsYkJwl19eJZ1mw3Ua7m2z2oJFHGVwCs5AHbjgErTADWgDD2CQg2fwCt6sJ+vFerc+Fq0lq5g5Bn9gff4AZ6OUVw==</latexit>

U (0)
R

<latexit sha1_base64="GmlZnp77N51RKzgN+pryaUaWOfI=">AAAB/nicbVBNS8NAEN3Ur1q/ouLJy2Ir1EtJetFjwYvHKqYttDFsNpt26e4m7G6EEgr+FS8eFPHq7/Dmv3Hb5qCtDwYe780wMy9MGVXacb6t0tr6xuZWebuys7u3f2AfHnVUkklMPJywRPZCpAijgniaakZ6qSSIh4x0w/H1zO8+EqloIu71JCU+R0NBY4qRNlJgnwxUHCNO2QTWvODuIa87F9NaYFedhjMHXCVuQaqgQDuwvwZRgjNOhMYMKdV3nVT7OZKaYkamlUGmSIrwGA1J31CBOFF+Pj9/Cs+NEsE4kaaEhnP190SOuFITHppOjvRILXsz8T+vn+n4ys+pSDNNBF4sijMGdQJnWcCISoK1eT2iCEtqboV4hCTC2iRWMSG4yy+vkk6z4ToN97ZZbcEijjI4BWegDlxwCVrgBrSBBzDIwTN4BW/Wk/VivVsfi9aSVcwcgz+wPn8AZJWUVQ==</latexit><latexit sha1_base64="GmlZnp77N51RKzgN+pryaUaWOfI=">AAAB/nicbVBNS8NAEN3Ur1q/ouLJy2Ir1EtJetFjwYvHKqYttDFsNpt26e4m7G6EEgr+FS8eFPHq7/Dmv3Hb5qCtDwYe780wMy9MGVXacb6t0tr6xuZWebuys7u3f2AfHnVUkklMPJywRPZCpAijgniaakZ6qSSIh4x0w/H1zO8+EqloIu71JCU+R0NBY4qRNlJgnwxUHCNO2QTWvODuIa87F9NaYFedhjMHXCVuQaqgQDuwvwZRgjNOhMYMKdV3nVT7OZKaYkamlUGmSIrwGA1J31CBOFF+Pj9/Cs+NEsE4kaaEhnP190SOuFITHppOjvRILXsz8T+vn+n4ys+pSDNNBF4sijMGdQJnWcCISoK1eT2iCEtqboV4hCTC2iRWMSG4yy+vkk6z4ToN97ZZbcEijjI4BWegDlxwCVrgBrSBBzDIwTN4BW/Wk/VivVsfi9aSVcwcgz+wPn8AZJWUVQ==</latexit><latexit sha1_base64="GmlZnp77N51RKzgN+pryaUaWOfI=">AAAB/nicbVBNS8NAEN3Ur1q/ouLJy2Ir1EtJetFjwYvHKqYttDFsNpt26e4m7G6EEgr+FS8eFPHq7/Dmv3Hb5qCtDwYe780wMy9MGVXacb6t0tr6xuZWebuys7u3f2AfHnVUkklMPJywRPZCpAijgniaakZ6qSSIh4x0w/H1zO8+EqloIu71JCU+R0NBY4qRNlJgnwxUHCNO2QTWvODuIa87F9NaYFedhjMHXCVuQaqgQDuwvwZRgjNOhMYMKdV3nVT7OZKaYkamlUGmSIrwGA1J31CBOFF+Pj9/Cs+NEsE4kaaEhnP190SOuFITHppOjvRILXsz8T+vn+n4ys+pSDNNBF4sijMGdQJnWcCISoK1eT2iCEtqboV4hCTC2iRWMSG4yy+vkk6z4ToN97ZZbcEijjI4BWegDlxwCVrgBrSBBzDIwTN4BW/Wk/VivVsfi9aSVcwcgz+wPn8AZJWUVQ==</latexit><latexit sha1_base64="GmlZnp77N51RKzgN+pryaUaWOfI=">AAAB/nicbVBNS8NAEN3Ur1q/ouLJy2Ir1EtJetFjwYvHKqYttDFsNpt26e4m7G6EEgr+FS8eFPHq7/Dmv3Hb5qCtDwYe780wMy9MGVXacb6t0tr6xuZWebuys7u3f2AfHnVUkklMPJywRPZCpAijgniaakZ6qSSIh4x0w/H1zO8+EqloIu71JCU+R0NBY4qRNlJgnwxUHCNO2QTWvODuIa87F9NaYFedhjMHXCVuQaqgQDuwvwZRgjNOhMYMKdV3nVT7OZKaYkamlUGmSIrwGA1J31CBOFF+Pj9/Cs+NEsE4kaaEhnP190SOuFITHppOjvRILXsz8T+vn+n4ys+pSDNNBF4sijMGdQJnWcCISoK1eT2iCEtqboV4hCTC2iRWMSG4yy+vkk6z4ToN97ZZbcEijjI4BWegDlxwCVrgBrSBBzDIwTN4BW/Wk/VivVsfi9aSVcwcgz+wPn8AZJWUVQ==</latexit>

U (0)
R

<latexit sha1_base64="GmlZnp77N51RKzgN+pryaUaWOfI=">AAAB/nicbVBNS8NAEN3Ur1q/ouLJy2Ir1EtJetFjwYvHKqYttDFsNpt26e4m7G6EEgr+FS8eFPHq7/Dmv3Hb5qCtDwYe780wMy9MGVXacb6t0tr6xuZWebuys7u3f2AfHnVUkklMPJywRPZCpAijgniaakZ6qSSIh4x0w/H1zO8+EqloIu71JCU+R0NBY4qRNlJgnwxUHCNO2QTWvODuIa87F9NaYFedhjMHXCVuQaqgQDuwvwZRgjNOhMYMKdV3nVT7OZKaYkamlUGmSIrwGA1J31CBOFF+Pj9/Cs+NEsE4kaaEhnP190SOuFITHppOjvRILXsz8T+vn+n4ys+pSDNNBF4sijMGdQJnWcCISoK1eT2iCEtqboV4hCTC2iRWMSG4yy+vkk6z4ToN97ZZbcEijjI4BWegDlxwCVrgBrSBBzDIwTN4BW/Wk/VivVsfi9aSVcwcgz+wPn8AZJWUVQ==</latexit><latexit sha1_base64="GmlZnp77N51RKzgN+pryaUaWOfI=">AAAB/nicbVBNS8NAEN3Ur1q/ouLJy2Ir1EtJetFjwYvHKqYttDFsNpt26e4m7G6EEgr+FS8eFPHq7/Dmv3Hb5qCtDwYe780wMy9MGVXacb6t0tr6xuZWebuys7u3f2AfHnVUkklMPJywRPZCpAijgniaakZ6qSSIh4x0w/H1zO8+EqloIu71JCU+R0NBY4qRNlJgnwxUHCNO2QTWvODuIa87F9NaYFedhjMHXCVuQaqgQDuwvwZRgjNOhMYMKdV3nVT7OZKaYkamlUGmSIrwGA1J31CBOFF+Pj9/Cs+NEsE4kaaEhnP190SOuFITHppOjvRILXsz8T+vn+n4ys+pSDNNBF4sijMGdQJnWcCISoK1eT2iCEtqboV4hCTC2iRWMSG4yy+vkk6z4ToN97ZZbcEijjI4BWegDlxwCVrgBrSBBzDIwTN4BW/Wk/VivVsfi9aSVcwcgz+wPn8AZJWUVQ==</latexit><latexit sha1_base64="GmlZnp77N51RKzgN+pryaUaWOfI=">AAAB/nicbVBNS8NAEN3Ur1q/ouLJy2Ir1EtJetFjwYvHKqYttDFsNpt26e4m7G6EEgr+FS8eFPHq7/Dmv3Hb5qCtDwYe780wMy9MGVXacb6t0tr6xuZWebuys7u3f2AfHnVUkklMPJywRPZCpAijgniaakZ6qSSIh4x0w/H1zO8+EqloIu71JCU+R0NBY4qRNlJgnwxUHCNO2QTWvODuIa87F9NaYFedhjMHXCVuQaqgQDuwvwZRgjNOhMYMKdV3nVT7OZKaYkamlUGmSIrwGA1J31CBOFF+Pj9/Cs+NEsE4kaaEhnP190SOuFITHppOjvRILXsz8T+vn+n4ys+pSDNNBF4sijMGdQJnWcCISoK1eT2iCEtqboV4hCTC2iRWMSG4yy+vkk6z4ToN97ZZbcEijjI4BWegDlxwCVrgBrSBBzDIwTN4BW/Wk/VivVsfi9aSVcwcgz+wPn8AZJWUVQ==</latexit><latexit sha1_base64="GmlZnp77N51RKzgN+pryaUaWOfI=">AAAB/nicbVBNS8NAEN3Ur1q/ouLJy2Ir1EtJetFjwYvHKqYttDFsNpt26e4m7G6EEgr+FS8eFPHq7/Dmv3Hb5qCtDwYe780wMy9MGVXacb6t0tr6xuZWebuys7u3f2AfHnVUkklMPJywRPZCpAijgniaakZ6qSSIh4x0w/H1zO8+EqloIu71JCU+R0NBY4qRNlJgnwxUHCNO2QTWvODuIa87F9NaYFedhjMHXCVuQaqgQDuwvwZRgjNOhMYMKdV3nVT7OZKaYkamlUGmSIrwGA1J31CBOFF+Pj9/Cs+NEsE4kaaEhnP190SOuFITHppOjvRILXsz8T+vn+n4ys+pSDNNBF4sijMGdQJnWcCISoK1eT2iCEtqboV4hCTC2iRWMSG4yy+vkk6z4ToN97ZZbcEijjI4BWegDlxwCVrgBrSBBzDIwTN4BW/Wk/VivVsfi9aSVcwcgz+wPn8AZJWUVQ==</latexit>

U (N)
R

<latexit sha1_base64="/sALLS8q+YLuy7Lks1gEuGEAzpw=">AAAB/nicbVBNS8NAEN34WetXVDx5WWyFeilJL3osePEkVUxbaGPYbDbt0t1N2N0IJRT8K148KOLV3+HNf+O2zUFbHww83pthZl6YMqq043xbK6tr6xubpa3y9s7u3r59cNhWSSYx8XDCEtkNkSKMCuJpqhnpppIgHjLSCUdXU7/zSKSiibjX45T4HA0EjSlG2kiBfdxXcYw4ZWNY9YK7h7x2cz6pBnbFqTszwGXiFqQCCrQC+6sfJTjjRGjMkFI910m1nyOpKWZkUu5niqQIj9CA9AwViBPl57PzJ/DMKBGME2lKaDhTf0/kiCs15qHp5EgP1aI3Ff/zepmOL/2cijTTROD5ojhjUCdwmgWMqCRYm9cjirCk5laIh0girE1iZROCu/jyMmk36q5Td28blSYs4iiBE3AKasAFF6AJrkELeACDHDyDV/BmPVkv1rv1MW9dsYqZI/AH1ucPkmeUcw==</latexit><latexit sha1_base64="/sALLS8q+YLuy7Lks1gEuGEAzpw=">AAAB/nicbVBNS8NAEN34WetXVDx5WWyFeilJL3osePEkVUxbaGPYbDbt0t1N2N0IJRT8K148KOLV3+HNf+O2zUFbHww83pthZl6YMqq043xbK6tr6xubpa3y9s7u3r59cNhWSSYx8XDCEtkNkSKMCuJpqhnpppIgHjLSCUdXU7/zSKSiibjX45T4HA0EjSlG2kiBfdxXcYw4ZWNY9YK7h7x2cz6pBnbFqTszwGXiFqQCCrQC+6sfJTjjRGjMkFI910m1nyOpKWZkUu5niqQIj9CA9AwViBPl57PzJ/DMKBGME2lKaDhTf0/kiCs15qHp5EgP1aI3Ff/zepmOL/2cijTTROD5ojhjUCdwmgWMqCRYm9cjirCk5laIh0girE1iZROCu/jyMmk36q5Td28blSYs4iiBE3AKasAFF6AJrkELeACDHDyDV/BmPVkv1rv1MW9dsYqZI/AH1ucPkmeUcw==</latexit><latexit sha1_base64="/sALLS8q+YLuy7Lks1gEuGEAzpw=">AAAB/nicbVBNS8NAEN34WetXVDx5WWyFeilJL3osePEkVUxbaGPYbDbt0t1N2N0IJRT8K148KOLV3+HNf+O2zUFbHww83pthZl6YMqq043xbK6tr6xubpa3y9s7u3r59cNhWSSYx8XDCEtkNkSKMCuJpqhnpppIgHjLSCUdXU7/zSKSiibjX45T4HA0EjSlG2kiBfdxXcYw4ZWNY9YK7h7x2cz6pBnbFqTszwGXiFqQCCrQC+6sfJTjjRGjMkFI910m1nyOpKWZkUu5niqQIj9CA9AwViBPl57PzJ/DMKBGME2lKaDhTf0/kiCs15qHp5EgP1aI3Ff/zepmOL/2cijTTROD5ojhjUCdwmgWMqCRYm9cjirCk5laIh0girE1iZROCu/jyMmk36q5Td28blSYs4iiBE3AKasAFF6AJrkELeACDHDyDV/BmPVkv1rv1MW9dsYqZI/AH1ucPkmeUcw==</latexit><latexit sha1_base64="/sALLS8q+YLuy7Lks1gEuGEAzpw=">AAAB/nicbVBNS8NAEN34WetXVDx5WWyFeilJL3osePEkVUxbaGPYbDbt0t1N2N0IJRT8K148KOLV3+HNf+O2zUFbHww83pthZl6YMqq043xbK6tr6xubpa3y9s7u3r59cNhWSSYx8XDCEtkNkSKMCuJpqhnpppIgHjLSCUdXU7/zSKSiibjX45T4HA0EjSlG2kiBfdxXcYw4ZWNY9YK7h7x2cz6pBnbFqTszwGXiFqQCCrQC+6sfJTjjRGjMkFI910m1nyOpKWZkUu5niqQIj9CA9AwViBPl57PzJ/DMKBGME2lKaDhTf0/kiCs15qHp5EgP1aI3Ff/zepmOL/2cijTTROD5ojhjUCdwmgWMqCRYm9cjirCk5laIh0girE1iZROCu/jyMmk36q5Td28blSYs4iiBE3AKasAFF6AJrkELeACDHDyDV/BmPVkv1rv1MW9dsYqZI/AH1ucPkmeUcw==</latexit>

U (1)
R

<latexit sha1_base64="RpltUt5An+UGzaGs0HXG3F80wNk=">AAAB/nicbVBNS8NAEN3Ur1q/ouLJy2Ir1EtJetFjwYvHKqYttDFsNpt26e4m7G6EEgr+FS8eFPHq7/Dmv3Hb5qCtDwYe780wMy9MGVXacb6t0tr6xuZWebuys7u3f2AfHnVUkklMPJywRPZCpAijgniaakZ6qSSIh4x0w/H1zO8+EqloIu71JCU+R0NBY4qRNlJgnwxUHCNO2QTWvODuIa+7F9NaYFedhjMHXCVuQaqgQDuwvwZRgjNOhMYMKdV3nVT7OZKaYkamlUGmSIrwGA1J31CBOFF+Pj9/Cs+NEsE4kaaEhnP190SOuFITHppOjvRILXsz8T+vn+n4ys+pSDNNBF4sijMGdQJnWcCISoK1eT2iCEtqboV4hCTC2iRWMSG4yy+vkk6z4ToN97ZZbcEijjI4BWegDlxwCVrgBrSBBzDIwTN4BW/Wk/VivVsfi9aSVcwcgz+wPn8AZhyUVg==</latexit><latexit sha1_base64="RpltUt5An+UGzaGs0HXG3F80wNk=">AAAB/nicbVBNS8NAEN3Ur1q/ouLJy2Ir1EtJetFjwYvHKqYttDFsNpt26e4m7G6EEgr+FS8eFPHq7/Dmv3Hb5qCtDwYe780wMy9MGVXacb6t0tr6xuZWebuys7u3f2AfHnVUkklMPJywRPZCpAijgniaakZ6qSSIh4x0w/H1zO8+EqloIu71JCU+R0NBY4qRNlJgnwxUHCNO2QTWvODuIa+7F9NaYFedhjMHXCVuQaqgQDuwvwZRgjNOhMYMKdV3nVT7OZKaYkamlUGmSIrwGA1J31CBOFF+Pj9/Cs+NEsE4kaaEhnP190SOuFITHppOjvRILXsz8T+vn+n4ys+pSDNNBF4sijMGdQJnWcCISoK1eT2iCEtqboV4hCTC2iRWMSG4yy+vkk6z4ToN97ZZbcEijjI4BWegDlxwCVrgBrSBBzDIwTN4BW/Wk/VivVsfi9aSVcwcgz+wPn8AZhyUVg==</latexit><latexit sha1_base64="RpltUt5An+UGzaGs0HXG3F80wNk=">AAAB/nicbVBNS8NAEN3Ur1q/ouLJy2Ir1EtJetFjwYvHKqYttDFsNpt26e4m7G6EEgr+FS8eFPHq7/Dmv3Hb5qCtDwYe780wMy9MGVXacb6t0tr6xuZWebuys7u3f2AfHnVUkklMPJywRPZCpAijgniaakZ6qSSIh4x0w/H1zO8+EqloIu71JCU+R0NBY4qRNlJgnwxUHCNO2QTWvODuIa+7F9NaYFedhjMHXCVuQaqgQDuwvwZRgjNOhMYMKdV3nVT7OZKaYkamlUGmSIrwGA1J31CBOFF+Pj9/Cs+NEsE4kaaEhnP190SOuFITHppOjvRILXsz8T+vn+n4ys+pSDNNBF4sijMGdQJnWcCISoK1eT2iCEtqboV4hCTC2iRWMSG4yy+vkk6z4ToN97ZZbcEijjI4BWegDlxwCVrgBrSBBzDIwTN4BW/Wk/VivVsfi9aSVcwcgz+wPn8AZhyUVg==</latexit><latexit sha1_base64="RpltUt5An+UGzaGs0HXG3F80wNk=">AAAB/nicbVBNS8NAEN3Ur1q/ouLJy2Ir1EtJetFjwYvHKqYttDFsNpt26e4m7G6EEgr+FS8eFPHq7/Dmv3Hb5qCtDwYe780wMy9MGVXacb6t0tr6xuZWebuys7u3f2AfHnVUkklMPJywRPZCpAijgniaakZ6qSSIh4x0w/H1zO8+EqloIu71JCU+R0NBY4qRNlJgnwxUHCNO2QTWvODuIa+7F9NaYFedhjMHXCVuQaqgQDuwvwZRgjNOhMYMKdV3nVT7OZKaYkamlUGmSIrwGA1J31CBOFF+Pj9/Cs+NEsE4kaaEhnP190SOuFITHppOjvRILXsz8T+vn+n4ys+pSDNNBF4sijMGdQJnWcCISoK1eT2iCEtqboV4hCTC2iRWMSG4yy+vkk6z4ToN97ZZbcEijjI4BWegDlxwCVrgBrSBBzDIwTN4BW/Wk/VivVsfi9aSVcwcgz+wPn8AZhyUVg==</latexit>

U (2)
R

<latexit sha1_base64="//EKsMTq5iMM1t+LPBEfAmbcZc0=">AAAB/nicbVBNS8NAEN3Ur1q/ouLJy2Ir1EtJetFjwYvHKqYttDFsNpt26e4m7G6EEgr+FS8eFPHq7/Dmv3Hb5qCtDwYe780wMy9MGVXacb6t0tr6xuZWebuys7u3f2AfHnVUkklMPJywRPZCpAijgniaakZ6qSSIh4x0w/H1zO8+EqloIu71JCU+R0NBY4qRNlJgnwxUHCNO2QTWvODuIa83L6a1wK46DWcOuErcglRBgXZgfw2iBGecCI0ZUqrvOqn2cyQ1xYxMK4NMkRThMRqSvqECcaL8fH7+FJ4bJYJxIk0JDefq74kccaUmPDSdHOmRWvZm4n9eP9PxlZ9TkWaaCLxYFGcM6gTOsoARlQRr83pEEZbU3ArxCEmEtUmsYkJwl19eJZ1mw3Ua7m2z2oJFHGVwCs5AHbjgErTADWgDD2CQg2fwCt6sJ+vFerc+Fq0lq5g5Bn9gff4AZ6OUVw==</latexit><latexit sha1_base64="//EKsMTq5iMM1t+LPBEfAmbcZc0=">AAAB/nicbVBNS8NAEN3Ur1q/ouLJy2Ir1EtJetFjwYvHKqYttDFsNpt26e4m7G6EEgr+FS8eFPHq7/Dmv3Hb5qCtDwYe780wMy9MGVXacb6t0tr6xuZWebuys7u3f2AfHnVUkklMPJywRPZCpAijgniaakZ6qSSIh4x0w/H1zO8+EqloIu71JCU+R0NBY4qRNlJgnwxUHCNO2QTWvODuIa83L6a1wK46DWcOuErcglRBgXZgfw2iBGecCI0ZUqrvOqn2cyQ1xYxMK4NMkRThMRqSvqECcaL8fH7+FJ4bJYJxIk0JDefq74kccaUmPDSdHOmRWvZm4n9eP9PxlZ9TkWaaCLxYFGcM6gTOsoARlQRr83pEEZbU3ArxCEmEtUmsYkJwl19eJZ1mw3Ua7m2z2oJFHGVwCs5AHbjgErTADWgDD2CQg2fwCt6sJ+vFerc+Fq0lq5g5Bn9gff4AZ6OUVw==</latexit><latexit sha1_base64="//EKsMTq5iMM1t+LPBEfAmbcZc0=">AAAB/nicbVBNS8NAEN3Ur1q/ouLJy2Ir1EtJetFjwYvHKqYttDFsNpt26e4m7G6EEgr+FS8eFPHq7/Dmv3Hb5qCtDwYe780wMy9MGVXacb6t0tr6xuZWebuys7u3f2AfHnVUkklMPJywRPZCpAijgniaakZ6qSSIh4x0w/H1zO8+EqloIu71JCU+R0NBY4qRNlJgnwxUHCNO2QTWvODuIa83L6a1wK46DWcOuErcglRBgXZgfw2iBGecCI0ZUqrvOqn2cyQ1xYxMK4NMkRThMRqSvqECcaL8fH7+FJ4bJYJxIk0JDefq74kccaUmPDSdHOmRWvZm4n9eP9PxlZ9TkWaaCLxYFGcM6gTOsoARlQRr83pEEZbU3ArxCEmEtUmsYkJwl19eJZ1mw3Ua7m2z2oJFHGVwCs5AHbjgErTADWgDD2CQg2fwCt6sJ+vFerc+Fq0lq5g5Bn9gff4AZ6OUVw==</latexit><latexit sha1_base64="//EKsMTq5iMM1t+LPBEfAmbcZc0=">AAAB/nicbVBNS8NAEN3Ur1q/ouLJy2Ir1EtJetFjwYvHKqYttDFsNpt26e4m7G6EEgr+FS8eFPHq7/Dmv3Hb5qCtDwYe780wMy9MGVXacb6t0tr6xuZWebuys7u3f2AfHnVUkklMPJywRPZCpAijgniaakZ6qSSIh4x0w/H1zO8+EqloIu71JCU+R0NBY4qRNlJgnwxUHCNO2QTWvODuIa83L6a1wK46DWcOuErcglRBgXZgfw2iBGecCI0ZUqrvOqn2cyQ1xYxMK4NMkRThMRqSvqECcaL8fH7+FJ4bJYJxIk0JDefq74kccaUmPDSdHOmRWvZm4n9eP9PxlZ9TkWaaCLxYFGcM6gTOsoARlQRr83pEEZbU3ArxCEmEtUmsYkJwl19eJZ1mw3Ua7m2z2oJFHGVwCs5AHbjgErTADWgDD2CQg2fwCt6sJ+vFerc+Fq0lq5g5Bn9gff4AZ6OUVw==</latexit>

U (N)
R

<latexit sha1_base64="/sALLS8q+YLuy7Lks1gEuGEAzpw=">AAAB/nicbVBNS8NAEN34WetXVDx5WWyFeilJL3osePEkVUxbaGPYbDbt0t1N2N0IJRT8K148KOLV3+HNf+O2zUFbHww83pthZl6YMqq043xbK6tr6xubpa3y9s7u3r59cNhWSSYx8XDCEtkNkSKMCuJpqhnpppIgHjLSCUdXU7/zSKSiibjX45T4HA0EjSlG2kiBfdxXcYw4ZWNY9YK7h7x2cz6pBnbFqTszwGXiFqQCCrQC+6sfJTjjRGjMkFI910m1nyOpKWZkUu5niqQIj9CA9AwViBPl57PzJ/DMKBGME2lKaDhTf0/kiCs15qHp5EgP1aI3Ff/zepmOL/2cijTTROD5ojhjUCdwmgWMqCRYm9cjirCk5laIh0girE1iZROCu/jyMmk36q5Td28blSYs4iiBE3AKasAFF6AJrkELeACDHDyDV/BmPVkv1rv1MW9dsYqZI/AH1ucPkmeUcw==</latexit><latexit sha1_base64="/sALLS8q+YLuy7Lks1gEuGEAzpw=">AAAB/nicbVBNS8NAEN34WetXVDx5WWyFeilJL3osePEkVUxbaGPYbDbt0t1N2N0IJRT8K148KOLV3+HNf+O2zUFbHww83pthZl6YMqq043xbK6tr6xubpa3y9s7u3r59cNhWSSYx8XDCEtkNkSKMCuJpqhnpppIgHjLSCUdXU7/zSKSiibjX45T4HA0EjSlG2kiBfdxXcYw4ZWNY9YK7h7x2cz6pBnbFqTszwGXiFqQCCrQC+6sfJTjjRGjMkFI910m1nyOpKWZkUu5niqQIj9CA9AwViBPl57PzJ/DMKBGME2lKaDhTf0/kiCs15qHp5EgP1aI3Ff/zepmOL/2cijTTROD5ojhjUCdwmgWMqCRYm9cjirCk5laIh0girE1iZROCu/jyMmk36q5Td28blSYs4iiBE3AKasAFF6AJrkELeACDHDyDV/BmPVkv1rv1MW9dsYqZI/AH1ucPkmeUcw==</latexit><latexit sha1_base64="/sALLS8q+YLuy7Lks1gEuGEAzpw=">AAAB/nicbVBNS8NAEN34WetXVDx5WWyFeilJL3osePEkVUxbaGPYbDbt0t1N2N0IJRT8K148KOLV3+HNf+O2zUFbHww83pthZl6YMqq043xbK6tr6xubpa3y9s7u3r59cNhWSSYx8XDCEtkNkSKMCuJpqhnpppIgHjLSCUdXU7/zSKSiibjX45T4HA0EjSlG2kiBfdxXcYw4ZWNY9YK7h7x2cz6pBnbFqTszwGXiFqQCCrQC+6sfJTjjRGjMkFI910m1nyOpKWZkUu5niqQIj9CA9AwViBPl57PzJ/DMKBGME2lKaDhTf0/kiCs15qHp5EgP1aI3Ff/zepmOL/2cijTTROD5ojhjUCdwmgWMqCRYm9cjirCk5laIh0girE1iZROCu/jyMmk36q5Td28blSYs4iiBE3AKasAFF6AJrkELeACDHDyDV/BmPVkv1rv1MW9dsYqZI/AH1ucPkmeUcw==</latexit><latexit sha1_base64="/sALLS8q+YLuy7Lks1gEuGEAzpw=">AAAB/nicbVBNS8NAEN34WetXVDx5WWyFeilJL3osePEkVUxbaGPYbDbt0t1N2N0IJRT8K148KOLV3+HNf+O2zUFbHww83pthZl6YMqq043xbK6tr6xubpa3y9s7u3r59cNhWSSYx8XDCEtkNkSKMCuJpqhnpppIgHjLSCUdXU7/zSKSiibjX45T4HA0EjSlG2kiBfdxXcYw4ZWNY9YK7h7x2cz6pBnbFqTszwGXiFqQCCrQC+6sfJTjjRGjMkFI910m1nyOpKWZkUu5niqQIj9CA9AwViBPl57PzJ/DMKBGME2lKaDhTf0/kiCs15qHp5EgP1aI3Ff/zepmOL/2cijTTROD5ojhjUCdwmgWMqCRYm9cjirCk5laIh0girE1iZROCu/jyMmk36q5Td28blSYs4iiBE3AKasAFF6AJrkELeACDHDyDV/BmPVkv1rv1MW9dsYqZI/AH1ucPkmeUcw==</latexit>

U (1)
R
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FIG. 1: Classical-Quantum Feedback-Loop of VQS: Op-
timisation of cost functions with function evaluations per-
formed on a programmable 20-qubit trapped-ion analog quan-
tum simulator. Variational control parameters are passed to
the analog quantum simulator, which generates trial states as
quench dynamics from a set of resource Hamiltonians with
symmetry-protecting quantum circuits, consisting of entan-
gling and single qubit operations, corresponding to quantum
resources. Measurement results for correlation functions are
obtained by rotating the qubits to the proper basis (green
boxes) followed by quantum projective measurements in the
standard basis. A central data repository (CDR) stores the
information on the obtained many-body correlation functions
and allows for data re-evaluation for di↵erent Hamiltonian
parameters (see Appendix D).

transformation [37], our target Hamiltonian reads
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where j labels the lattice site, for a system of length N ,
and �̂a

j
are Pauli operators. Here the first term describes

the creation or annihilation of a particle-antiparticle pair,
mapped to a spin flip-flop term with coupling w. In the
following, we set w = 1 as the energy unit. The second
term is the matter mass term, with bare mass m. The
last term, with coupling ḡ, is the electric field energy.
The 1D character of our model allows the electric field

IQOQI Innsbruck 

 R. Blatt and P. Zoller’s groups                   Nature (2016), arXiv:1810.03421

QUANTUM SIMULATION

First experiment in Blatt’s group, Nature (2016)

5 1 6  |  N A T U R E  |  V O L  5 3 4  |  2 3  J U N E  2 0 1 6

LETTER
doi:10.1038/nature18318

Real-time dynamics of lattice gauge theories with a 
few-qubit quantum computer
Esteban A. Martinez1*, Christine A. Muschik2,3*, Philipp Schindler1, Daniel Nigg1, Alexander Erhard1, Markus Heyl2,4, 
Philipp Hauke2,3, Marcello Dalmonte2,3, Thomas Monz1, Peter Zoller2,3 & Rainer Blatt1,2

Gauge theories are fundamental to our understanding of 
interactions between the elementary constituents of matter as 
mediated by gauge bosons1,2. However, computing the real-time 
dynamics in gauge theories is a notorious challenge for classical 
computational methods. This has recently stimulated theoretical 
effort, using Feynman’s idea of a quantum simulator3,4, to devise 
schemes for simulating such theories on engineered quantum-
mechanical devices, with the difficulty that gauge invariance and 
the associated local conservation laws (Gauss laws) need to be 
implemented5–7. Here we report the experimental demonstration 
of a digital quantum simulation of a lattice gauge theory, by 
realizing (1 + 1)-dimensional quantum electrodynamics (the 
Schwinger model8,9) on a few-qubit trapped-ion quantum computer. 
We are interested in the real-time evolution of the Schwinger 
mechanism10,11, describing the instability of the bare vacuum due 
to quantum fluctuations, which manifests itself in the spontaneous 
creation of electron–positron pairs. To make efficient use of our 
quantum resources, we map the original problem to a spin model 
by eliminating the gauge fields12 in favour of exotic long-range 
interactions, which can be directly and efficiently implemented on 
an ion trap architecture13. We explore the Schwinger mechanism of 
particle–antiparticle generation by monitoring the mass production 
and the vacuum persistence amplitude. Moreover, we track the real-
time evolution of entanglement in the system, which illustrates how 
particle creation and entanglement generation are directly related. 
Our work represents a first step towards quantum simulation of 
high-energy theories using atomic physics experiments—the long-
term intention is to extend this approach to real-time quantum 
simulations of non-Abelian lattice gauge theories.

Small-scale quantum computers exist today in the laboratory as 
programmable quantum devices14. In particular, trapped-ion quan-
tum computers13 provide a platform allowing a few hundred coherent 
quantum gates to act on a few qubits, with a clear roadmap towards 
scaling up these devices4,15. This provides the tools for universal digital 
quantum simulation16, where the time evolution of a quantum system 
is approximated as a stroboscopic sequence of quantum gates17. Here 
we show how this technology can be used to simulate the real-time 
dynamics of a minimal model of a lattice gauge theory, realizing the 
Schwinger model8,9 as a one-dimensional quantum field theory with a 
chain of trapped ions (Fig. 1).

Our few-qubit demonstration is a first step towards simulating 
real-time dynamics in gauge theories: such simulations are funda-
mental for the understanding of many physical phenomena, including 
thermalization after heavy-ion collisions and pair creation studied at 
high- intensity laser facilities6,18. Although existing classical numerical 
methods such as quantum Monte Carlo have been remarkably success-
ful for describing equilibrium phenomena, no systematic techniques 
exist to tackle the dynamical long-time behaviour of all but very small 

systems. In contrast, quantum simulations aim at the long-term goal 
of solving the specific yet fundamental class of problems that currently 
cannot be tackled by these classical techniques. The digital approach 
we employ here is based on the Hamiltonian formulation of gauge  
theories9, and enables direct access to the system wavefunction. As 
we show below, this allows us to investigate entanglement generation  
during particle–antiparticle production, emphasizing a novel perspec-
tive on the dynamics of the Schwinger mechanism2.

Digital quantum simulations described in the present work are con-
ceptually different from, and fundamentally more challenging than, 
previously reported condensed-matter-motivated simulations of spin 
and Hubbard-type models4,19,20. In gauge theories, local symmetries 
lead to the introduction of dynamical gauge fields obeying a Gauss law6. 
Formally, this crucial feature is described by local symmetry generators 
Ĝ{ }i  that commute with the Hamiltonian of the system ˆ ˆ =H G[ , ] 0i  and 

restrict the dynamics to a subspace of physical states | Ψphysical〉  which 
satisfy ˆ Ψ Ψ| 〉= | 〉G qi iphysical physical , where qi are background charges. We 
will be interested in the case qi =  0 for all i (see Methods). Realizing 
such a constrained dynamics on a quantum simulator is demanding 
and has been the focus of theoretical research6,7,11,21–24. Instead, to opti-
mally use the finite resources represented by a few qubits of existing 
quantum hardware, we encode the gauge degrees of freedom in a long-
range interaction between the fermions (electrons and positrons), 
which can be implemented efficiently on our experimental platform. 
This allows us to explore quantum simulation of coherent real-time 

1Institute for Experimental Physics, University of Innsbruck, 6020 Innsbruck, Austria. 2Institute for Quantum Optics and Quantum Information of the Austrian Academy of Sciences, 6020 
Innsbruck, Austria. 3Institute for Theoretical Physics, University of Innsbruck, 6020 Innsbruck, Austria. 4Physics Department, Technische Universität München, 85747 Garching, Germany.
* These authors contributed equally to this work.
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Figure 1 | Quantum simulation of the Schwinger mechanism. a, The 
instability of the vacuum due to quantum fluctuations is one of the most 
fundamental effects in gauge theories. We simulate the coherent real-time 
dynamics of particle–antiparticle creation by realizing the Schwinger 
model (one-dimensional quantum electrodynamics) on a lattice, as 
described in the main text. b, The experimental setup for the simulation 
consists of a linear Paul trap, where a string of 40Ca+ ions is confined.  
The electronic states of each ion, depicted as horizontal lines, encode  
a spin | ↑ 〉  or | ↓ 〉 . These states can be manipulated using laser beams  
(see Methods for details).
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dynamics with four qubits, exemplified here by the creation of  
electron–positron pairs (Fig. 1).

To this end, we experimentally study the Schwinger model, which 
describes quantum electrodynamics in one dimension. This model is 
extensively used as a testbed for lattice gauge theories as it shares many 
important features with quantum chromodynamics, including con-
finement, chiral symmetry breaking, and a topological theta vacuum6. 
In the Kogut–Susskind Hamiltonian formulation of the Schwinger 
model8,9,
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describes the interaction of fermionic field operators Φ̂n at sites 
n =  1…N with gauge fields that are represented by the canonically com-
muting operators ˆ ˆθ δ=L i[ , ]n m n m, . L̂n and θ̂n correspond to the electro-
magnetic field and vector potential on the connection between sites  
n and n +  1. The latter can be eliminated by a gauge transformation (see 
Methods). The fields Φ̂n represent Kogut–Susskind fermions (Fig. 2), 
where the presence of an electron (positron) is mapped to an unoccu-
pied odd (occupied even) lattice site, allowing for a convenient incor-
poration of particles and antiparticles in a single fermion field. 
Accordingly, the third term in equation (1), representing the rest mass 
m, obtains a staggered sign. The first term corresponds to the creation 
and annihilation of particle–antiparticle pairs, and the second term 
reflects the energy stored in the electric field. Their energy scales  
w =  1/(2a) and J =  g2a/2 depend on the lattice spacing a and the  
fermion light coupling constant g. We use natural units ħ =  c =  1;  

therefore, a and t have the dimension of length, while w, J, m and g have 
the dimension of inverse length.

To realize the model using trapped ions, we map the fermionic oper-
ators Φ̂n to spin operators (Fig. 2a) by a Jordan–Wigner transforma-
tion12, which converts the short-range hopping in equation (1) into 
nearest-neighbour spin flip terms. In this formulation, the Gauss  
law takes the form ˆ ˆ σ̂− = + (− )−L L [ 1 ],n n n

z n
1

1
2

 where σn are the Pauli 
matrices. This law is the lattice version of the continuum law ∇ E =  ρ, 
where ρ is the charge density. As illustrated in Fig. 2c, the Gauss law 
completely determines the electric fields for a given spin configuration 
and choice of background field. Following ref. 12, we use this constraint 
to eliminate the operators L̂n from the dynamics, adapting a scheme 
that has previously proven advantageous for numerical calculations25 
to a quantum simulation experiment, where the Gauss law is fulfilled 
by construction.

The elimination of the gauge fields maps the original problem to 
a spin model with long-range interactions that reflect the Coulomb 
interactions between the simulated particles. This allows an efficient 
use of resources, since N spins can be used to simulate N particles and 
their accompanying N −  1 gauge fields. However, as shown in Fig. 2d, 
the required couplings and local terms have a very unusual distance 
and position dependence. The challenge has thus been moved from 
engineering a constrained dynamics of 2N −  1 quantum systems on 
a gauge-invariant Hilbert space to the realization of an exotic and  
asymmetric interaction of N spins.

Our platform is ideally suited for this task, since long-range interac-
tions and precise single qubit operations are available in trapped-ion 
systems. These capabilities allow us to realize the required interactions 
by means of a digital quantum simulation scheme17. To this end, the 
desired Hamiltonian, =∑ =H H ,k

K
k1  is split into K parts that can be 

directly implemented and are applied separately in subsequent time 
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Figure 2 | Encoding Wilson’s lattice gauge theories in digital quantum 
simulators. Matter fields, represented by one-component fermion fields  
Φ̂n at sites n, interact via equation (1) with gauge variables defined on the 
links connecting the sites. a, Unoccupied odd (occupied even) sites, 
represented by filled (empty) circles, indicate the presence of an electron 
(positron). b, Gauge variables (shown as horizontal blue thick lines) are 
represented by operators L̂n with integer eigenvalues Ln =  0, ± 1,…, ± ∞ .  
c, By mapping the fields Φ̂n to Pauli operators σ̂n, we obtain a spin model 
(the spins are represented by filled/empty arrows). In this language, the 
Gauss law governing the interaction of fermions and gauge variables reads 
ˆ ˆ σ̂− = + (− )−L L [ 1 ]n n z

n n1
1
2

, where σ̂z is the diagonal Pauli matrix. The 
realization of the Schwinger model on a small-scale device requires an 
optimized use of resources. We achieve this by eliminating the gauge fields 
at the cost of obtaining a model with long-range couplings (and additional 

local terms). More specifically, the Gauss law determines the gauge fields 
for a given matter configuration and background field ε0. The elimination 
of the operators L̂n transforms the original model with nearest-neighbour 
terms into a pure spin model with long-range couplings that corresponds 
to the Coulomb interaction between the charged particles. d, Coupling 
matrix of the resulting interactions for N =  10, along with the total spin 
Hamiltonian ĤS. For illustration, e shows the couplings involving the  
fifth spin. The colours (and thicknesses) of lines represent the different 
interaction strengths cij according to the matrix shown in d. For 
implementing ĤS in a scalable and efficient way, we introduce time steps  
of length T (f), each subdivided into three sections (g). In each of these 
(length not to scale), one of the three parts of ĤS is realized as explained in 
Methods. h, The protocol for realizing Ĥzz for N =  10. The ions interact 
according to the Mølmer–Sørensen (MS) Hamiltonian ĤMSz. During each 
short time window of length ∆ tI, a different set of ions is coupled by ĤMSz.
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windows. By repeating the sequence multiple times, the resulting time 
evolution of the system U(t) closely resembles an evolution where the 
individual parts of the Hamiltonian act simultaneously, as can be shown 
using the Suzuki–Lie–Trotter expansion:

ˆ ˆ( )= =
⎛
⎝
⎜⎜⎜ ⊗

⎞
⎠
⎟⎟⎟

−
→∞ =

− /U t e lim eiHt
n k

K
iH t n

n

1
k

Our scheme is depicted in Fig. 2f–h. It allows for an efficient realization 
of the required dynamics and implements the coupling matrix shown 
in Fig. 2d, e with a minimal number of time steps, scaling only linearly 
in the number of sites N. The scheme is therefore scalable to larger 
systems. A discussion of finite size effects can be found in Methods.

We realize the simulation in a quantum information processor based 
on a string of 40Ca+ ions confined in a macroscopic linear Paul trap 
(Fig. 1b). There, each qubit is encoded in the electronic states | ↓ 〉  =  4S1/2 
(with magnetic quantum number m =  −  1/2), | ↑ 〉  =  3D5/2 (m =  −  1/2) 
of a single ion. The energy difference between these states is in the 
optical domain, so the state of the qubit can be manipulated using laser 
light pulses. More specifically, a universal set of high-fidelity quantum 
operations is available, consisting of collective rotations around the 
equator of the Bloch sphere, addressed rotations around the z axis and 

entangling Mølmer–Sørensen (MS) gates26. With a sequence of these 
gates, arbitrary unitary operations can be implemented27. Thus, we 
are able to simulate any Hamiltonian evolution, and in particular the 
interactions required here, by means of digital quantum simulation 
techniques, as shown in Fig. 2. Each of the implemented time evolu-
tions consists of a sequence of over 200 quantum gates (see Extended 
Data Fig. 3). In order to realize the non-local interactions Hzz and H±  
with their specific long-range interactions, we use global MS entan-
gling gates together with a spectroscopic decoupling method to tailor 
the range of the interaction. For the decoupling, the population of the 
ions that are not involved in the specific operations are shelved into 
additional electronic states that are not affected by the light for the 
entangling operations (see Methods). The local terms in Hz correspond 
to z rotations that are directly available in our set of operations. The 
strength of all terms can be tuned by changing the duration of the laser 
pulses corresponding to the physical operations.

Within our scheme, a wide range of fundamental properties in 
one-dimensional lattice gauge theories can be studied. To demonstrate 
our approach, we concentrate on simulating the coherent quantum 
real-time dynamics of the Schwinger mechanism, that is, the creation 
of particle–antiparticle pairs out of the bare vacuum | vacuum〉 ,  
where matter is entirely absent (see Methods). After initializing the 
system in this state, which corres ponds to the ground state for m →  ∞  
(Fig. 3a), we apply ĤS (Fig. 2d) for different masses and coupling 
strengths. As a first step, we measure the particle number density 
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Figure 3 | Time evolution of the particle number density, ν. a, We show 
the ideal evolution under the Schwinger Hamiltonian ĤS shown in Fig. 2d, 
the ideal evolution considering time discretization errors (see Fig. 2),  
the expected evolution including an experimental (exp.) error model  
(see Methods) and the experimental data for electric field energy J =  w  
and particle mass m =  0.5w (see equation (1)). After postselection of the 
experimental data (see Methods), the remaining populations are {86 ±   2, 
79 ±   1, 73 ±   1, 69 ±   1}% after {1, 2, 3, 4} time steps (averaged over all  
data sets). Error bars correspond to standard deviations estimated from a 
Monte Carlo bootstrapping procedure. The insets show the initial state  
of the simulation (left inset), corresponding to the bare vacuum with 
particle number density ν =  0, as well as one example of a state containing 
one pair (right inset), that is, a state with ν =  0.5, represented as  
filled/empty arrows as in Fig. 2. b, Experimental data and c, theoretical 
prediction for the evolution of the particle number density ν as a function 
of the dimensionless time wt and the dimensionless particle mass m/w, 
with J =  w.
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Figure 4 | Time evolution of the vacuum persistence amplitude and 
entanglement. We show the square of the vacuum persistence amplitude 
| G(t)| 2 (the Loschmidt echo), which quantifies the decay of the unstable 
vacuum, and the logarithmic negativity En, a measure of the entanglement 
between the left and the right halves of the system. a, b, The time evolution 
of | G(t)| 2 (a) and En (b) for different values of the particle mass m and 
fixed electric field energy J =  w, where w is the rate of particle–antiparticle 
creation and annihilation (compare equation (1)), as a function of the 
dimensionless time wt. c, d, The time evolution of | G(t)| 2 (c) and En (d) 
changes for different values of J and fixed particle mass m =  0. Circles 
correspond to the experimental data and squares connected by solid lines 
to the expected evolution assuming an experimental error model explained 
in Methods. Error bars correspond to standard deviations estimated from 
a Monte Carlo bootstrapping procedure. e, Illustration of the creation of a 
particle–antiparticle pair starting from the bare vacuum state.
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2

Figure 1. Markov dynamics of a quantum spin chain on the level of local tensors. a) shows the relationship between a density matrix ⇢ in
MPO representation (top) and the locally purified tensor network (bottom) with tensors Al, physical dimension d, bond dimension D0 and
Kraus dimension K. b) The action of a local channel T that exclusively acts on lattice site 2 on the level of the MPO and on the level of the
locally purified form. In the latter, the Kraus rank k2 of the quantum channel T is joined together with K. c) Compression schemes for the
bond and Kraus dimension of a local tensor via singular value decompositions (SVD). d) Locally purified evolution of a time step e⌧L for a
2-local Hamiltonian and on-site Lindbladians. Here we show only the 3 rightmost of the 5 Suzuki-Trotter layers from Eq. (4).

neighbouring lattice sites. We describe the variational mixed
state of the system as a tensor network representing the den-
sity matrix ⇢. But instead of expressing ⇢ directly as a MPO
[20, 38] we keep it expressed at every stage of our algorithm
in its locally purified form ⇢ = XX†, where the purification
operator X is a variational MPO:

[X]s1,...,sN
r1,...,rN

=
X

m1,...,mN�1

A[1]s1,r1
m1

A[2]s2,r2
m1,m2

. . . A[N ]sN ,rN
mN�1

. (2)

That is, we represent ⇢ as a locally purified tensor net-
work made of rank four tensors A[l] with physical dimen-
sion d, bond dimension D and Kraus dimension K (shown
in Fig. 1a). Our algorithm is now an extension of the Time
Evolving Block Decimation (TEBD) scheme [39], acting on
the level of the local tensor A[l] that also allows for dissipa-
tive channels, and never requires to contract, even partially,
the two tensor network layers (X and X†) together. Simi-
larly to TEBD, it involves splitting the propagator e⌧L for a
small time-step ⌧ into several Suzuki-Trotter layers of mutu-
ally commuting operations. To this end we consider the evo-
lution from time t to t+ ⌧ in Liouville-space

|⇢t+⌧ ii = e⌧L |⇢tii = e⌧(�iH⌦1+i1⌦H̄+D)
|⇢tii , (3)

where |Mii denotes the Liouville vector representation of a
matrix M and the operator D =

P
j
(Lj ⌦ L̄j � (L†

j
Lj ⌦ 1+

1 ⌦ LT

j
L̄j)/2) contains the dissipative part of the Lindblad

operator L. As usual, we define the operators He and Ho

by splitting the Hamiltonian H =
P

i
hi into two sums, one

containing the even interactions h2l,2l+1 and one containing
the odd interactions h2l+1,2(l+1), respectively. So both He

and Ho are each built on mutually commuting terms. If the
Lindblad generators Lj are now on-site (the case of two-site
Lindbladians is treated later on), we can approximate e⌧L via
a symmetric Suzuki-Trotter decomposition up to second order
in time as

e⌧L = e⌧Ho/2e⌧He/2e⌧De⌧He/2e⌧Ho/2 +O(⌧3) , (4)

partially shown in Fig. 1d, where H⌫ = �iH⌫ ⌦1+ i1⌦ H̄⌫

with ⌫ = o, e. Generalisations to higher orders can be con-
structed from the Baker-Campbell-Hausdorff formula. Note

that the layers He and Ho implement the coherent part of the
evolution and are identical to the usual TEBD layers. In fact,
by having ⇢t expressed as ⇢t = XtX

†

t
we see that by acting

as X 0 = e�i⌧Ho/2Xt we recover exactly |⇢0ii = e⌧Ho/2 |⇢tii
(and likewise for the even coherent layer He). Hence, on
the level of the local tensors A[l] we can just adapt the usual
TEBD algorithm for nearest neighbour Hamiltonians, to effi-
ciently perform the coherent part of the dynamics.

The dissipative layer, however, requires a more careful
treatment and we exploit the fact that since the generators Lj

act only on a single site, we find e⌧D =
N

l
e⌧Dl , with

Dl =
X

jl

✓
Ljl ⌦ L̄jl �

1

2
(L†

jl
Ljl ⌦ 1 + 1 ⌦ LT

jl
L̄jl)

◆
,(5)

where the sum runs over all generators Ljl which act on lattice
site l. Since e⌧Dl is completely positive, Choi’s theorem [40]
guarantees that we can find via diagonalisation a set of Kraus-
operators {Bl,q} satisfying e⌧Dl =

P
k

q=1 Bl,q ⌦ B̄l,q . The
action of e⌧Dl on the level of the local tensors is now given
by a contraction of Bl,q into A[l]

t
, while joining the variational

Kraus dimension K with the Kraus rank k of the quantum
channel, as shown in Fig. 1b (by construction k  d2). The
application of each Suzuki-Trotter layer increases only the di-
mension of a single leg of the local tensors A[l]: The bond
dimension D is increased by the coherent layers, the Kraus
dimension K by the dissipative layers. This allows for im-
mediate compression of the enlarged dimension via standard
tensor network tools (singular value decomposition and trun-
cation of the smallest values, see Fig. 1c), which keeps errors
under control, as discussed in the supplemental material (SM).

The algorithm yields an overall computational costs scal-
ing as O(d5D3K)+O(d5D2K2), by executing a clever con-
traction of the coherent terms. Moreover, the locally purified
tensor network makes good advantage of the tensor network
gauge transformations, e.g. by reducing costs for local mea-
surements. Finally, we were also able to provide an error es-
timator for the approximations included in the algorithm, cal-
culated from the truncated singular values arising from com-
pression (see the SM).
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μ ≫ ϵ, due to the gauge invariance, the Hamiltonian has
two possible ground states where the configuration of the
fermions is staggered (leftmost occupied site) and the
configuration of the bosons is also staggered with two
possible patterns. This phase is twofold degenerate, the
vacuum states break charge and parity symmetry and they
have nonzero electric flux. For μ ≪ ϵ, the vacuum is unique
and the staggered fermion has the rightmost site occupied.
This phase is C and P symmetric and it has a net zero
electric flux.
The “physical” subspace.—The number of bosons per

link Nx;xþ1 ¼ N is a local conserved quantity of the model
written in terms of Schwinger bosons. Because of gauge
invariance of the model, i.e., ½H;Gx$ ¼ 0, the gauge
generator of the local Uð1Þ symmetry Gx is a second local
conserved quantity. The usual convention is to define the
“physical” subspace as the one that fulfills
Gxjphysicali ¼ 0, ∀ x [32]. In a quantum link model,
we can solve the gauge invariance or Gauss’s law locally,
that is, in terms of the Schwinger bosons, the constraint is
given by

c†x;rcx;r þ ψ†
xψx þ c†x;lcx;ljphys ¼ N −ð−1Þx −1

2
: (2)

Because of this feature, we can show that the gauge
invariant condition and the conserved number of bosons
per link can be written exactly in a MPS form. Indeed, the
Gauss projection can be done locally defining the local
Hilbert space fjsxig, while the link representation is
implemented by the product between the MPS matrices.
Recently, the action of global symmetries on MPS-like
wave function has been considered [40–42], what follows
can be seen as the counterpart of this for local (gauge)
symmetries.
For concreteness, we build the MPS for a case with S¼ 1

2
on the link, but a similar discussion can be carried out for
any representation S, gauge symmetry group, Abelian or
non-Abelian, and space-time dimensions for the Quantum
link models (see Supplemental Material [28]).

For N ¼ 1 bosons per link, there are just three local
gauge invariant states jn x;r; n x; n x;li where the configura-
tions depend on the site: if it is odd (n 2x−1;r þ n 2x−1þ
n 2x−1;l ¼ 2) or even (n 2x;r þ n 2x þ n 2x;l ¼ 1). Being a spin-
1
2 the representation of the quantum link variable implies
that on every link, there is only one boson present, i.e.,
n x;l þ n xþ1;r ¼ 1. These two conditions are fulfilled if the
wave function has a general MPS form

jphysi ¼
X

s1;''';sx;'''
aðs1; ' ' ' ; sx; ' ' 'Þ

× TrfA½s1$ ' ' 'A½sx$ ' ' 'gjs1; ' ' ' ; sx; ' ' 'i (3)

with

A½1$ ¼
!
0 0
1 0

"
; A½2$ ¼

!
1 0
0 0

"
; A½3$ ¼

!
0 1
0 0

"
;

this MPS structure codifies both the gauge invariance and
the representation of the link variable;aðs1; ' ' ' ; sx; ' ' 'Þ is a
general amplitude, in principle nonlocal, that could also be
represented by a MPS.
MPS as a variational set.—To get the thermodynamical

properties of this model, we use an imaginary time
evolution algorithm with a MPS decomposition of the
ground state [43,44]. We show results for chains with up to
L ¼ 140 sites and bond dimension D up to 30.
We use open boundary conditions (see Fig. 1) fixing the

occupation of the first boson to one, hc†1;rc1;ri ¼ 1, and the
occupation of the last boson to zero, hc†L;lcL;li ¼ 0. With
these boundary conditions, we observe the transition
between both phases and we avoid the double degeneracy
of the CP broken phase.
The parameter that controls the transitions between the

different phases is the staggered mass μ of the fermions.
From the behavior of the order parameter E, we extract an
estimate of the critical point and of the critical exponents.
Because of the Z2 parity and charge conjugation sym-
metries, the critical point belongs to the Ising universality
class, as confirmed by the following numerical analysis.
Indeed, the finite size scaling hypothesis predicts the order

(a) (b) (c)

FIG. 2 (color online). (a) Electric flux E as a function of μ for L ¼ f40; 60; 80; 100; 120; 140g from top to bottom, S¼ 1
2 and D ¼ 30.

(b) Finite size scaling of the electric flux E shown in panel (a), resulting in the critical point μc ¼ 0.655 ( 0.003 and critical exponents
ν∼1 and β∼1=8. (c) Uniform part of the entanglement entropy (green circles, first order approximation, i.e., ux;L ¼ 1

2 ðux;L þ uxþ1;LÞ,
and blue squares, third order approximation [48]). Inset: fit of ux;L as a function of the system size logL: a linear fit results in the central
charge c ¼ 0.49 ( 0.01.
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U(1) LATTICE GAUGE THEORY IN 1+1D

allows us to solve exactly, within the tensor network
representation, the constraints imposed by the local sym-
metries of this model.
Quantum link models have two independent local

symmetries:
(i) Gauge models are invariant under local symmetry

transformations. The local generators of these symmetries,
Gx, commute with the Hamiltonian, ½H;Gx" ¼ 0 . Hence,
Gx are constant of motion or local conserved quantities,
which constrain the physical Hilbert space of the theory,
Gxjphysi ¼ 0 , ∀ x, and the total Hilbert space splits in a
physical or gauge invariant subspace and a gauge variant or
unphysical subspace:Htotal ¼ Hphys⊕Hunphys. In QED, this
gauge condition is the usual Gauss’s law.
(ii) The quantum link formulation of the gauge degrees

of freedom introduces an additional constraint at every link,
that is, the conservation of the number of link particles,
c†x;lcx;l þ c†xþ 1;rcxþ 1;r ¼ Nx;xþ 1. Hence, ½H;Nx;xþ 1" ¼ 0
which introduce a second and independent local constraint
in the Hilbert space.
In the following, first, we present the theoretical char-

acterization of the local constraint (i) and (ii) in terms of
tensor networks. Second, we exploit this exact representa-
tion to implement a MPS-based approach which allows us
to characterize the full phase diagram of nontrivial gauge
invariant models. In particular, we study a quantum link
version of the Schwinger model identifying the different
phases and the universality class of the phase transition in
the presence of a background field.
The gauge invariant model.—Gauge theories in (1 þ 1)

dimensions, and in particular the Schwinger model describ-
ing quantum electrodynamics in one space and one time
dimension [29–31], are nontrivial interacting models of
fermions and gauge fields. They provide a playground to
compute and understand many interesting phenomena with
surprising analogies with non-Abelian gauge theories in
higher dimensions as, to name a few, the confinement of
fermionic degrees of freedom and the appearance of a
massive boson in the spectrum, chiral symmetry breaking
through the axial anomaly, screening of external charges,
and a topological θ vacuum. In particular, we consider a
Uð1Þ gauge invariant model in (1 þ 1) dimensions defined
by the Hamiltonian

H ¼ g2

2

X

x

½Ex;xþ 1 −ð−1ÞxE0 "2 þ μ
X

x

ð−1Þxψ†
xψx

−ϵ
X

x

ψ†
xUx;xþ 1ψxþ 1 þ H:c:; (1)

where ψx are spinless fermionic operators (matter fields
with a staggered mass term μ) living on the vertices of the
one-dimensional lattice, i.e., fψx;ψ

†
yg ¼ δx;y, usually

denoted as staggered fermions [32,33]. The vacuum of
the staggered fermions is given by a quantum state at half-
filling describing the Fermi-Dirac sea. The bosonic

operators Ex;xþ 1 and Ux;xþ 1 (electric and gauge field) live
on the links of the one-dimensional lattice, such that
½Ex;xþ 1; Uy;yþ 1" ¼ δx;yUx;xþ 1. The coupling constant that
measures the strength of the electric energy term is from
now on set to one, i.e., g2 =2 ¼ 1 while ϵ describes the
interaction between the matter and gauge fields. Finally, E0

corresponds to a classical background field which at
E0 ¼ 1

2 , the ground state at every link is twofold degenerate.
In the Wilson formulation, the lattice Schwinger model has
been numerically investigated using Monte Carlo tech-
niques [34,35], strong coupling expansion [36–38], and
MPS-based methods [13,16].
The quantum link [19–21,39] representation of the gauge

degrees of freedom is given by the SUð2 Þ spin operators if
we identify Ex;xþ 1 ≡ SðzÞx;xþ 1 and Ux;xþ 1 ≡ Sþx;xþ 1. We use
Schwinger bosons (cx;l, cxþ 1;r) to represent the spin algebra
such that Ux;xþ 1 ≡ Sþx;xþ 1 ¼ cx;lc

†
xþ 1;r where we have

introduced a local set of states given by the occupation
numbers of bosons on the right (x, r), on the fermion (x)
and on the bosons on the left (x, l) as follows jn x;r; n x; n x;li.
The number of bosons per link Nx;xþ 1 determines the
representation of the spin. In this work, we use the two
smallest integer and half-integer representations, i.e., S ¼ 1

2
for Nx;xþ 1 ¼ 1 and S ¼ 1 for Nx;xþ 1 ¼ 2 .
With these definitions, the Hamiltonian is invariant

under local Uð1Þ symmetry transformations, and also it
is invariant under the discrete parity transformation P and
charge conjugation C (see Supplemental Material [28]).
Because of the Z2 discrete nature of these symmetries, they
can be broken in one-dimensional systems, allowing
critical points between a CP broken phase and an unbroken
one. The order parameter, the total electric flux, E ¼P

xhEx;xþ 1i=L ¼
P

xhS
ðzÞ
x;xþ 1i=L locates the transition. It

is zero in the disordered phase, nonzero in the ordered
phase, and changes the sign under the C or P symmetry,
i.e., PE ¼ CE ¼ −E.
Representative states of the different phases appear at the

strong coupling limit jμj ≫ jϵj where the Hamiltonian is
given by Hstr ¼ μ

P
xð−1Þxψ

†
xψx (sketched in Fig. 1). For
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FIG. 1 (color online). Ground state of the spin-12 quantum link
model in the limiting cases of jμj ≫ jϵj: in the upper (lower) panel
the fermion and the gauge field states are represented for μ ≪ ϵ
(μ ≫ ϵ) resulting inzero electric flux,E ¼ 0 , andaC andP invariant
state (nonzero electric flux, E ≠0 , C and P symmetry broken).
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allows us to solve exactly, within the tensor network
representation, the constraints imposed by the local sym-
metries of this model.
Quantum link models have two independent local

symmetries:
(i) Gauge models are invariant under local symmetry

transformations. The local generators of these symmetries,
Gx, commute with the Hamiltonian, ½H;Gx" ¼ 0 . Hence,
Gx are constant of motion or local conserved quantities,
which constrain the physical Hilbert space of the theory,
Gxjphysi ¼ 0 , ∀ x, and the total Hilbert space splits in a
physical or gauge invariant subspace and a gauge variant or
unphysical subspace:Htotal ¼ Hphys⊕Hunphys. In QED, this
gauge condition is the usual Gauss’s law.
(ii) The quantum link formulation of the gauge degrees

of freedom introduces an additional constraint at every link,
that is, the conservation of the number of link particles,
c†x;lcx;l þ c†xþ 1;rcxþ 1;r ¼ Nx;xþ 1. Hence, ½H;Nx;xþ 1" ¼ 0
which introduce a second and independent local constraint
in the Hilbert space.
In the following, first, we present the theoretical char-

acterization of the local constraint (i) and (ii) in terms of
tensor networks. Second, we exploit this exact representa-
tion to implement a MPS-based approach which allows us
to characterize the full phase diagram of nontrivial gauge
invariant models. In particular, we study a quantum link
version of the Schwinger model identifying the different
phases and the universality class of the phase transition in
the presence of a background field.
The gauge invariant model.—Gauge theories in (1 þ 1)

dimensions, and in particular the Schwinger model describ-
ing quantum electrodynamics in one space and one time
dimension [29–31], are nontrivial interacting models of
fermions and gauge fields. They provide a playground to
compute and understand many interesting phenomena with
surprising analogies with non-Abelian gauge theories in
higher dimensions as, to name a few, the confinement of
fermionic degrees of freedom and the appearance of a
massive boson in the spectrum, chiral symmetry breaking
through the axial anomaly, screening of external charges,
and a topological θ vacuum. In particular, we consider a
Uð1Þ gauge invariant model in (1 þ 1) dimensions defined
by the Hamiltonian

H ¼ g2
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where ψx are spinless fermionic operators (matter fields
with a staggered mass term μ) living on the vertices of the
one-dimensional lattice, i.e., fψx;ψ

†
yg ¼ δx;y, usually

denoted as staggered fermions [32,33]. The vacuum of
the staggered fermions is given by a quantum state at half-
filling describing the Fermi-Dirac sea. The bosonic

operators Ex;xþ 1 and Ux;xþ 1 (electric and gauge field) live
on the links of the one-dimensional lattice, such that
½Ex;xþ 1; Uy;yþ 1" ¼ δx;yUx;xþ 1. The coupling constant that
measures the strength of the electric energy term is from
now on set to one, i.e., g2 =2 ¼ 1 while ϵ describes the
interaction between the matter and gauge fields. Finally, E0

corresponds to a classical background field which at
E0 ¼ 1

2 , the ground state at every link is twofold degenerate.
In the Wilson formulation, the lattice Schwinger model has
been numerically investigated using Monte Carlo tech-
niques [34,35], strong coupling expansion [36–38], and
MPS-based methods [13,16].
The quantum link [19–21,39] representation of the gauge

degrees of freedom is given by the SUð2 Þ spin operators if
we identify Ex;xþ 1 ≡ SðzÞx;xþ 1 and Ux;xþ 1 ≡ Sþx;xþ 1. We use
Schwinger bosons (cx;l, cxþ 1;r) to represent the spin algebra
such that Ux;xþ 1 ≡ Sþx;xþ 1 ¼ cx;lc

†
xþ 1;r where we have

introduced a local set of states given by the occupation
numbers of bosons on the right (x, r), on the fermion (x)
and on the bosons on the left (x, l) as follows jn x;r; n x; n x;li.
The number of bosons per link Nx;xþ 1 determines the
representation of the spin. In this work, we use the two
smallest integer and half-integer representations, i.e., S ¼ 1

2
for Nx;xþ 1 ¼ 1 and S ¼ 1 for Nx;xþ 1 ¼ 2 .
With these definitions, the Hamiltonian is invariant

under local Uð1Þ symmetry transformations, and also it
is invariant under the discrete parity transformation P and
charge conjugation C (see Supplemental Material [28]).
Because of the Z2 discrete nature of these symmetries, they
can be broken in one-dimensional systems, allowing
critical points between a CP broken phase and an unbroken
one. The order parameter, the total electric flux, E ¼P

xhEx;xþ 1i=L ¼
P

xhS
ðzÞ
x;xþ 1i=L locates the transition. It

is zero in the disordered phase, nonzero in the ordered
phase, and changes the sign under the C or P symmetry,
i.e., PE ¼ CE ¼ −E.
Representative states of the different phases appear at the

strong coupling limit jμj ≫ jϵj where the Hamiltonian is
given by Hstr ¼ μ

P
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xψx (sketched in Fig. 1). For
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FIG. 1 (color online). Ground state of the spin-12 quantum link
model in the limiting cases of jμj ≫ jϵj: in the upper (lower) panel
the fermion and the gauge field states are represented for μ ≪ ϵ
(μ ≫ ϵ) resulting inzero electric flux,E ¼ 0 , andaC andP invariant
state (nonzero electric flux, E ≠0 , C and P symmetry broken).
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how entanglement entropies are directly tied to string-
breaking. Finally, we present our result on scattering in
Sec. V, and draw a summary of our results in Sec. VI.

II. MODEL AND METHODS

A. Model Hamiltonian: QED in (1+1)d

QED in (1+1)d, also known as the Schwinger model,
represents an ideal test-ground for the benchmark and
development of new computational methods. Despite
its relative simplicity, it captures fundamental aspects of
gauge theories such as, e.g., the presence of a chiral sym-
metry undergoing spontaneous symmetry breaking [49–
59]. Even more importantly, this theory, like QCD,
displays confinement: di↵erently from (3+1)d QED, in
(1+1)d electrons and positrons are confined, and interact
via a long-range potential which increases linearly with
distance. Due to the large energy cost associated with
the electric flux between charges at large inter-charge
distances, the electric flux string is unstable to particle-
antiparticle creation as in QCD and string breaking
takes place. While this phenomenon, directly connected
to the Schwinger mechanism of mass production out of
a vacuum, has been long debated, and notable insights
have been provided using a variety of approximate meth-
ods, a full quantum mechanical understanding of the
complex real-time dynamics taking place during string
breaking is lacking due to the computationally complex-
ity of the many-body problem [60–63].

In the Hamiltonian formulation, its dynamics is defined
by the following form:

H = �t

X

x

h
 
†
xU

†
x,x+1 x+1 +  

†
x+1Ux,x+1 x

i

+m

X

x

(�1)x †
x x +

g
2

2

X

x

E
2
x,x+1. (2)

where  †
x, x are fermionic creation/annihilation opera-

tors describing Kogut-Susskind (staggered) fermions (see
Fig. 1), Ux,x+1 are the gauge fields residing on the
(x, x + 1) link, and we denote the strength of fermion-
hopping (the kinetic energy of electrons or positrons)
with t, the staggered mass of the fermions with m, and
the electric coupling strength with g, where Ex,x+1 is the
electric-field operator. The gauge generator is given by

G̃x =  
†
x x + Ex,x+1 � Ex�1,x +

(�1)x � 1

2
, (3)

satisfying the Gauss law if all physical states | i sat-
isfy G̃x| i = 0. While in the Wilson formulation Ux,x+1

are parallel transporters acting on an infinite dimensional
Hilbert space, we focus here on a formulation based on
QLM, where the gauge fields are represented by spin-
1 operators, Ux,x+1 = S

+
x,x+1, Ex,x+1 = S

z
x,x+1 and, as

such, act on a finite-dimensional link Hilbert space. In

particular, the electric field operator allows three possible
states for the electric flux, which constraint the physical
states per site as described in Fig. 1. A detailed dis-
cussion of the quantum link formulation can be found in
Ref. [29–31], while in Ref. [23] it was shown how such
quantum link formulation reproduces the phase diagram
and quantum criticality of the continuum theory.

B. String breaking and classical cartoon states

String breaking is the process of cutting and shorten-
ing the electric flux string that connects a pair particle-
antiparticle by creating a new charge-anticharge pair [36].
In our framework a string consists of two charges creat-
ing non-zero electric flux between them. The charges
are represented by appropriate boundary conditions or
as dynamical charges as excitations of the mass field at
the site of the fermion. This is realized by an e↵ective
jump of a fermion from the site of one charge to the
site of the second charge satisfying the Gauss law. The
string of electric flux then follows from Gauss’ law. The
charges force the links in a non-zero flux state, according
to the configuration of the charges either in one direction
or the other. Before embarking in a full quantum me-
chanical investigation of string breaking, we now discuss
its classical (t = 0) static picture, which provides a sim-
ple, yet informative illustration of the di↵erent stages of
the string breaking mechanism. A set of cartoons of the
classical states is provided in Fig. 1:
Vacuum. In the vacuum (A), neither mass nor electric

field excitations are present. Its energy is thus E0 =
�

L
2m.
String. In the string state (B), two mass excitations

are present at the boundaries, and all electric fields con-
necting the two are also in the |+1i state. The resulting
string energy then takes the form

Estring � E0 =
g
2

2
(L� 1) + 2m. (4)

Pairs. In the pairs state (C) all the masses are excited
forming charge-anticharge pairs with an energy Epairs =
g2L
4 +mL.
Mesons. In a confined phase, particle-antiparticle

pair production can favor the establishment of a vacuum
state between two static charges, which then form mesons
at the boundary of the string (see (D)). The resulting
energy is:

Emesons � E0 = g
2 + 4m. (5)

At the static level, string breaking takes place at a critical
distance Lc, above which the mesons state is energetically
favored over the string state (Estring(Lc) = Emesons):

Lc =
4m

g2
+ 3 (6)

μ ≫ ϵ, due to the gauge invariance, the Hamiltonian has
two possible ground states where the configuration of the
fermions is staggered (leftmost occupied site) and the
configuration of the bosons is also staggered with two
possible patterns. This phase is twofold degenerate, the
vacuum states break charge and parity symmetry and they
have nonzero electric flux. For μ ≪ ϵ, the vacuum is unique
and the staggered fermion has the rightmost site occupied.
This phase is C and P symmetric and it has a net zero
electric flux.
The “physical” subspace.—The number of bosons per

link Nx;xþ1 ¼ N is a local conserved quantity of the model
written in terms of Schwinger bosons. Because of gauge
invariance of the model, i.e., ½H;Gx$ ¼ 0, the gauge
generator of the local Uð1Þ symmetry Gx is a second local
conserved quantity. The usual convention is to define the
“physical” subspace as the one that fulfills
Gxjphysicali ¼ 0, ∀ x [32]. In a quantum link model,
we can solve the gauge invariance or Gauss’s law locally,
that is, in terms of the Schwinger bosons, the constraint is
given by

c†x;rcx;r þ ψ†
xψx þ c†x;lcx;ljphys ¼ N −ð−1Þx −1

2
: (2)

Because of this feature, we can show that the gauge
invariant condition and the conserved number of bosons
per link can be written exactly in a MPS form. Indeed, the
Gauss projection can be done locally defining the local
Hilbert space fjsxig, while the link representation is
implemented by the product between the MPS matrices.
Recently, the action of global symmetries on MPS-like
wave function has been considered [40–42], what follows
can be seen as the counterpart of this for local (gauge)
symmetries.
For concreteness, we build the MPS for a case with S¼ 1

2
on the link, but a similar discussion can be carried out for
any representation S, gauge symmetry group, Abelian or
non-Abelian, and space-time dimensions for the Quantum
link models (see Supplemental Material [28]).

For N ¼ 1 bosons per link, there are just three local
gauge invariant states jn x;r; n x; n x;li where the configura-
tions depend on the site: if it is odd (n 2x−1;r þ n 2x−1þ
n 2x−1;l ¼ 2) or even (n 2x;r þ n 2x þ n 2x;l ¼ 1). Being a spin-
1
2 the representation of the quantum link variable implies
that on every link, there is only one boson present, i.e.,
n x;l þ n xþ1;r ¼ 1. These two conditions are fulfilled if the
wave function has a general MPS form

jphysi ¼
X

s1;''';sx;'''
aðs1; ' ' ' ; sx; ' ' 'Þ

× TrfA½s1$ ' ' 'A½sx$ ' ' 'gjs1; ' ' ' ; sx; ' ' 'i (3)

with

A½1$ ¼
!
0 0
1 0

"
; A½2$ ¼

!
1 0
0 0

"
; A½3$ ¼

!
0 1
0 0

"
;

this MPS structure codifies both the gauge invariance and
the representation of the link variable;aðs1; ' ' ' ; sx; ' ' 'Þ is a
general amplitude, in principle nonlocal, that could also be
represented by a MPS.
MPS as a variational set.—To get the thermodynamical

properties of this model, we use an imaginary time
evolution algorithm with a MPS decomposition of the
ground state [43,44]. We show results for chains with up to
L ¼ 140 sites and bond dimension D up to 30.
We use open boundary conditions (see Fig. 1) fixing the

occupation of the first boson to one, hc†1;rc1;ri ¼ 1, and the
occupation of the last boson to zero, hc†L;lcL;li ¼ 0. With
these boundary conditions, we observe the transition
between both phases and we avoid the double degeneracy
of the CP broken phase.
The parameter that controls the transitions between the

different phases is the staggered mass μ of the fermions.
From the behavior of the order parameter E, we extract an
estimate of the critical point and of the critical exponents.
Because of the Z2 parity and charge conjugation sym-
metries, the critical point belongs to the Ising universality
class, as confirmed by the following numerical analysis.
Indeed, the finite size scaling hypothesis predicts the order

(a) (b) (c)

FIG. 2 (color online). (a) Electric flux E as a function of μ for L ¼ f40; 60; 80; 100; 120; 140g from top to bottom, S¼ 1
2 and D ¼ 30.

(b) Finite size scaling of the electric flux E shown in panel (a), resulting in the critical point μc ¼ 0.655 ( 0.003 and critical exponents
ν∼1 and β∼1=8. (c) Uniform part of the entanglement entropy (green circles, first order approximation, i.e., ux;L ¼ 1

2 ðux;L þ uxþ1;LÞ,
and blue squares, third order approximation [48]). Inset: fit of ux;L as a function of the system size logL: a linear fit results in the central
charge c ¼ 0.49 ( 0.01.
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μ ≫ ϵ, due to the gauge invariance, the Hamiltonian has
two possible ground states where the configuration of the
fermions is staggered (leftmost occupied site) and the
configuration of the bosons is also staggered with two
possible patterns. This phase is twofold degenerate, the
vacuum states break charge and parity symmetry and they
have nonzero electric flux. For μ ≪ ϵ, the vacuum is unique
and the staggered fermion has the rightmost site occupied.
This phase is C and P symmetric and it has a net zero
electric flux.
The “physical” subspace.—The number of bosons per

link Nx;xþ1 ¼ N is a local conserved quantity of the model
written in terms of Schwinger bosons. Because of gauge
invariance of the model, i.e., ½H;Gx$ ¼ 0, the gauge
generator of the local Uð1Þ symmetry Gx is a second local
conserved quantity. The usual convention is to define the
“physical” subspace as the one that fulfills
Gxjphysicali ¼ 0, ∀ x [32]. In a quantum link model,
we can solve the gauge invariance or Gauss’s law locally,
that is, in terms of the Schwinger bosons, the constraint is
given by

c†x;rcx;r þ ψ†
xψx þ c†x;lcx;ljphys ¼ N −ð−1Þx −1

2
: (2)

Because of this feature, we can show that the gauge
invariant condition and the conserved number of bosons
per link can be written exactly in a MPS form. Indeed, the
Gauss projection can be done locally defining the local
Hilbert space fjsxig, while the link representation is
implemented by the product between the MPS matrices.
Recently, the action of global symmetries on MPS-like
wave function has been considered [40–42], what follows
can be seen as the counterpart of this for local (gauge)
symmetries.
For concreteness, we build the MPS for a case with S¼ 1

2
on the link, but a similar discussion can be carried out for
any representation S, gauge symmetry group, Abelian or
non-Abelian, and space-time dimensions for the Quantum
link models (see Supplemental Material [28]).

For N ¼ 1 bosons per link, there are just three local
gauge invariant states jn x;r; n x; n x;li where the configura-
tions depend on the site: if it is odd (n 2x−1;r þ n 2x−1þ
n 2x−1;l ¼ 2) or even (n 2x;r þ n 2x þ n 2x;l ¼ 1). Being a spin-
1
2 the representation of the quantum link variable implies
that on every link, there is only one boson present, i.e.,
n x;l þ n xþ1;r ¼ 1. These two conditions are fulfilled if the
wave function has a general MPS form
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s1;''';sx;'''
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with
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0 1
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;

this MPS structure codifies both the gauge invariance and
the representation of the link variable;aðs1; ' ' ' ; sx; ' ' 'Þ is a
general amplitude, in principle nonlocal, that could also be
represented by a MPS.
MPS as a variational set.—To get the thermodynamical

properties of this model, we use an imaginary time
evolution algorithm with a MPS decomposition of the
ground state [43,44]. We show results for chains with up to
L ¼ 140 sites and bond dimension D up to 30.
We use open boundary conditions (see Fig. 1) fixing the

occupation of the first boson to one, hc†1;rc1;ri ¼ 1, and the
occupation of the last boson to zero, hc†L;lcL;li ¼ 0. With
these boundary conditions, we observe the transition
between both phases and we avoid the double degeneracy
of the CP broken phase.
The parameter that controls the transitions between the

different phases is the staggered mass μ of the fermions.
From the behavior of the order parameter E, we extract an
estimate of the critical point and of the critical exponents.
Because of the Z2 parity and charge conjugation sym-
metries, the critical point belongs to the Ising universality
class, as confirmed by the following numerical analysis.
Indeed, the finite size scaling hypothesis predicts the order

(a) (b) (c)

FIG. 2 (color online). (a) Electric flux E as a function of μ for L ¼ f40; 60; 80; 100; 120; 140g from top to bottom, S¼ 1
2 and D ¼ 30.

(b) Finite size scaling of the electric flux E shown in panel (a), resulting in the critical point μc ¼ 0.655 ( 0.003 and critical exponents
ν∼1 and β∼1=8. (c) Uniform part of the entanglement entropy (green circles, first order approximation, i.e., ux;L ¼ 1

2 ðux;L þ uxþ1;LÞ,
and blue squares, third order approximation [48]). Inset: fit of ux;L as a function of the system size logL: a linear fit results in the central
charge c ¼ 0.49 ( 0.01.

PRL 112, 201601 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending
23 MAY 2014

201601-3

➤ Quantum link representation 

➤ Staggered fermions 

➤ Ising universality class 

➤ Central charge 

➤ Confirmed by higher-link representation

E. Rico, T. Pichler, M. Dalmonte, P. Zoller, and SM, PRL (2014)



MESONS SCATTERING
T. Pichler, E. Rico, M. Dalmonte, P. Zoller, and SM,  PRX (2016)

Sp
ac

e

Real time

11

(dashed lines), we see that the entanglement entropy for
the vacuum stays close to zero as the large mass and
electric coupling strongly suppress the particle-pair cre-
ation which triggered the strong growth of the entropy
in the previous case. Also in the middle of the string
the entanglement entropy is drastically a↵ected: the blue
dashed line initially behaves as the full one in the mass-
less case, reflecting the same mass excitation by pair cre-
ation. However, the violet dashed line always remains
close to zero as further evolution into the string broken
state is energetically forbidden: the state evolves back
into the string and the correlations between the even-odd
sites cannot be created. The system is then oscillating
between two almost degenerate states, the initial string
state and the state made out of pairs, resulting in the os-
cillating behavior of the entanglement entropy between
zero and one. Finally, the third case with m = 0.25 and
g = 1.25 (dot-dashed lines) lies between the two previous
limiting cases: here the string breaks, but does not evolve
into an anti-string. In the vacuum, the entanglement evo-
lution is very similar to the first case as the entropy grows
almost linearly after a transient, however the slope is re-
duced by the nonzero mass. The correlation in center of
the string initially evolves as for the massless case, but
after the first two hopping processes the oscillation turns
into a vacuum-like growth. This is a strong indication
for non periodic string breaking, represented by the two
hopping processes followed by the evolution of a lattice
without an electric field: the dynamics although being
unitary, resemble a dissipative process where the electric
field energy irreversibly disperses into the vacuum. This
behavior directly resembles what we observe in the elec-
tric field dynamics, where no string-breaking is observed
in this parameter regime, and the electric field does not
display any clear periodic signature.When we have an
evolution without an electric field, then we defi-
nitely have string breaking or do I misunderstand
the last sentence?

B. Entanglement propagation and wavefront

Even more remarkably, the real-space particle cre-
ations and the entanglement dynamics are quantitatively
tied. We concentrate on the signatures of the wavefront
of the string imprinted on the evolution of the entangle-
ment entropy. We consider the case m = g = 0 as it is
characterized by the most pronounced wavefront, where
the string with its slow entanglement growth is embed-
ded in the fast growing vacuum (see Fig. 3, panel C1).
To characterize the entanglement spreading due to the
wavefront, we exploit the fact that the entanglement en-
tropy in the vacuum is constant in space even though it
evolves in time. Therefore, far enough from both sides
of the string there is a plateau of constant entropy much
higher than the entropy in the middle of the string. Thus,
to define the wavefront of entanglement spreading due
to the string, one can look for the lattice site at which
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FIG. 12: Scattering of two dynamical mesons using the system
parameters m = 0, g = 8. The plot illustrate the time evolu-
tion of the electric field E(x) as a function of the position x.
After the scattering has taken place, two clear wave-fronts are
clearly visible. Lower panel: number of charges N� =

P
x nx

in the system during the evolution (blue: � = 1 . . . 32), num-
ber of particles present in the center (purple: � = 16), number
of charges on either side of the center (coinciding lines red:
� = 1 . . . 15 and orange: � = 17 . . . 32).

the entropy plateau starts to decrease. We identify this
point computing the di↵erence of entropy between near-
est neighbor bipartitions: tracking when this quantity
become bigger than a given threshold allows to charac-
terize the entanglement wavefront spreading.
In Fig. 11 we show the estimated spreading velocity for

di↵erent values of the threshold: the limit for the thresh-
old value going to zero gives an estimate of the spreading
velocity. A power law fit results in a spreading velocity of
vS = 2.0± 0.2 in very good agreement with the analytic
estimate of vT ' 2 and the result from the electric field of
vE = 1.96± 0.02 demonstrating the intimate connection
between entanglement and electric field spreading.

V. SCATTERING

Finally, in this last Section we explore a completely dif-
ferent process that we think might be highly interesting
to study using either our numerical methods and possi-
bly in quantum simulations, that is real-time scattering
processes. We then define composite particles as a pair of
charge and anti-charge divided only by one link, namely
a meson, and give them some momentum such that they
collide. The new exciting feature that we enable with
our approach, is that during the scattering process, we

12

FIG. 13: Scattering of two dynamical mesons. Main panel:
Entanglement entropy S(x) using a bipartition between sites
x and x+1 as a function to time. After the scattering, the en-
tropy significantly increases in the system: this is a direct sig-
nature of enhanced quantum correlations. Right panel: S(x)
at di↵erent times (see color bar), showing a clear plateau af-
ter the collision, which enlarges as a function of time. The
empty circles show the current position of the maxima of the
electric-field which follow approximately the mesons center of
mass. The dashed line represents S(x) generated by a single
meson, while the green bar highlights the di↵erence �S to
the entropy of the colliding mesons (di↵erence between full
and dashed line at ⌧ = 120, xi = 17).

the electric field dynamics after the collision. Then, we
present results for the entanglement dynamics during and
after the collisions showing that the meson collision is ac-
companied by the creation of entanglement between the
two mesons. Indeed, as we will show, the entanglement is
bounded by the propagation wavefronts of the particles
after collision, and is characterized by a constant plateau
of the entanglement entropy within the region.

A. Electric field patterns during meson collisions

In order to produce the scattering process, we shall
start with two particles, each of them composed by a
pair of charge and anti-charge divided only by one link,
namely a meson, with opposite momentum such that
they collide. For the two-meson problem, there is a sim-
ple picture from the Schwinger model in the strong cou-
pling limit: the massless theory is a free massive boson
(meson) theory that is expected to become weakly inter-
acting once a small mass term is included. Hence, in the
strong coupling region, a possible two-meson bound state
is loosely bound, while in the weak coupling region it is
tightly bound.

We start the numerical simulation with the state repre-
sented in the cartoon (D) in Fig. 1: two mesons separated
by a vacuum state of ten sites, which can be straightfor-
wardly be written in a simple, separable matrix product

state with t = 0. We provide momentum to the mesons
by adiabatically moving them from the boundaries to-
ward the center of the system: this is done by introducing
a deep box-shaped potential which decouples the mesons
from the rest of the system leaving it only the possibility
to oscillate between its position and a neighboring site.
The box-potential is removed at time ⌧i = 17.4 when
the meson is exactly at half oscillation: from that point
on the mesons evolve freely with an e↵ective momentum
mostly in one direction, one towards the other and even-
tually colliding [85]. In order to avoid vacuum fluctua-
tions during the process, we choose a large value of g = 8.
Fig. 12 shows an example of such a scattering process.
In particular, it shows the absolute value of the electric
field of two mesons approaching each other, colliding in
the center and the parting again. While before the col-
lision the meson are tightly bound, after the scattering
process the electric field di↵uses, and the corresponding
wavefront has a significantly attenuated signal. In the
lower panel of Fig. 12, we monitor the time-evolution of
the total particle number (blue), clearly indicating that
this quantity is approximately conserved over the entire
time-evolution, due to the large electric field strength,
which suppresses particle-antiparticle creation.

B. Post-collision entanglement generation

A classical-like picture of the scattering process pre-
sented above, reads that two particles move against each
other and then bounce back as there is not enough energy
available to generate a more complex inelastic scattering.
However, this picture is oversimplified, as this is a fully
quantum process and indeed one can, once more, monitor
the quantum correlations generated during the scattering
process. This is done in Fig. 13, where we show the evo-
lution of the bipartite entanglement entropy: one sees
that entanglement is created and that it is mostly car-
ried by the two mesons - in this parameter regime, the
vacuum does not generate entanglement due to the very
large value of g2. Studying the bipartite entanglement
entropy for di↵erent bipartitions and times, one clearly
sees that there are two regimes: before the scattering
occurs, the entanglement is present only in the biparti-
tion that cuts the mesons wave packets, indicating two
electron-positron wave packets internally correlated, but
not sharing any quantum correlations among them. On
the contrary, after the scattering, the two wave packets
become highly correlated even when their two centers of
mass are clearly separated (see Fig. 12 for times ⌧ > 100).
The values of the entanglement entropy indicate that

one ebit of quantum information has been created dur-
ing the scattering process. In the right panel of Fig.
13, we present various cuts of the entanglement entropy
profile taken at di↵erent times, together with a compar-
ison with the entanglement generated by a single meson
moving through the lattice (dashed line). The di↵er-
ence of �S ⇡ 1 between the two cases (highlighted in
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ALL-TO-ALL TO LGT MAPPING
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HI =
∑

σ[k]
x
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x

σz |1⟩ = |1⟩ σz |0⟩ = − |0⟩
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z σ[j]
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•
c ∝ J · N
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The optimization problem is encoded in the Hamiltonian

Hp ¼ ∑
K

k¼1
Jk s̃zðkÞ þ∑

K−Nþ1

l¼1
Cl ð3Þ

The vector Jk runs over all K = N(N − 1) ∕2 elements of the interaction
matrix Jij from Eq. 1, thus translating the optimization parameters into
easily controllable local fields that act on physical qubits. Below, we
show that with the adequate choice of the constraints and their ge-
ometrical arrangement, all n-body interactions (local magnetic
field, pair interactions, three-body interactions, etc.) can be en-
coded in Eq. 3.

The constraints Cl are constructed from conditions on closed loops
of logical qubits with the necessary requirements (i) that the con-
straints cover all physical qubits and (ii) that the number of constraints
is at least K − N. As an illustrative example for two-body terms, con-
sider the closed loop of four bonds sz

(1)sz
(3)→sz

(2)sz
(3)→sz

(2)sz
(4)→

sz
(1)sz

(4) (red lines in Fig. 1A). Consistency of the relative alignment of
sz

1,2,3,4 demands either none, two, or all four of the pairs of logical
spins to be antiparallel. That is, the number of 1’s in the four physical
qubits s̃13z ; s̃23z ; s̃24z ; s̃14z has to be even (red cross in Fig. 1D). The
same considerations apply for any closed loop in the logical qubits.
For example, along a closed triangle, the number of physical qubits

equal to 0 can be 0 or 2. Similar constraints are also relevant in the con-
text of lattice gauge theories (15). From all the possible closed loops, we
select those that (iii) can be implemented in real space on a simple geo-
metry with local interactions only.

The solution that satisfies all the above conditions (i) to (iii) is
illustrated in Fig. 1D. For this, the constraints are constructed as
follows: Consider the index distance between logical qubits s = |i − j|.
The chosen loops consist of four connections: one of index distance s,
two connections with distance s + 1, and one with distance s + 2. As an
illustration, a building block loop with s = 1 is shown in Fig. 1 (A and
D) marked in red. The total of all s = 1 loops gives N − 3 constraints.
The next building block is a loop with s = 2, which can be geometrically
added as an additional row in a triangle, as shown in Fig. 1D.
Continuing this procedure up to s = N − 2 results in a construction
that satisfies all conditions (i) to (iii).

In a physical device, the local constraints can be enforced in var-
ious possible ways. Two typical forms to write such constraints are

Cl ¼ þCð ∑
m¼n;e;s;w

s̃ ðl;mÞ
z þ SlzÞ

2

or

Cl ¼ −Cs̃ðl;nÞz s̃ðl;eÞz s̃ðl;sÞz s̃ðl;wÞz ð4Þ

Here, the first sum represents an “ancilla-based” implementation.
The sum runs over the four members of each plaquette (north, east,
south, and west) and Sz is an ancilla qutrit with three possible
values: −4, 0, or 4. Implementations with ancilla qubits can also
be implemented with qubits only. The second form is an imple-
mentation that requires a four-body interaction on the plaquettes.
The preferable implementation of the constraints depends on the
details of the physical qubits (for example, superconducting qubits,
cold atoms, molecules or ions, and cavities).

As a final step, the boundaries of the lattice of physical qubits have
to be taken care of. In Fig. 1D, the bottom row (labeled with
“Readout”) consists of triangles instead of squares. These can be treated
in two ways: (i) introduce a separate constraint enforcing the condi-
tion that the number of 0’s in each of these triangles is odd and (ii)

1 2 3 4

12 23 34

14

13 24

=

=

=

=

A B

5 6

25 36

45 56

35 46

16
15 26

D

...

# = 0, 2, or 4

C

1

1

0

0

0

12

13

14

15

16

23

24

25

26

34

35

36

45

46

56

...

Readout0

1 1 1 1

0 0

0 1

1 1

1

= Fixed

0 0

1

0

0

1

1

Fig. 1. Illustration of the fully connected architecture. (A) The aim is to
encode a system of N logical spins with programmable infinite-range inter-
actions (solid lines). (B) New physical qubit variables are introduced for each
of theN(N− 1)/2 interactions, which take the value 1 if two connected logical
spins point in the same direction and 0 otherwise. (C) The new physical qu-
bits are noninteracting except for local constraints on plaquettes of four
spins. (D) The constraints correspond to closed paths connecting logical
spins [for example, the red cross in (D) corresponds to the red lines in (A)].
The number of 0’s in a plaquette can be either 0, 2, or 4. The particular ar-
rangement of new spins shown in (D) allows for a two-dimensional repre-
sentation of the infinite-range model with local constraints only. An
additional row of physical qubits fixed to 1 (yellow) completes the imple-
mentation. The solution of the optimization problem can be read out in spe-
cific combinations of the physical qubits, for example, as marked in (D).
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Fig. 2. Time-dependent spectrum. (A and B) Energy spectrum of a typ-
ical adiabatic sweep with N = 4 logical qubits and an additional random
field in the programmable implementation (A) and in a fictitious imple-
mentation of the logical qubits (B). Here, t is the time and T is the total
time of the sweep. Instantaneous eigenenergies Ei are measured with re-
spect to the ground state, DE = Ei − E0. The constraint strength is C/J = 2,
and the elements of the Jij matrix are random numbers uniformly taken
from the interval [−J,J]. Although the adiabatic transformation follows dif-
ferent quantum paths, at the end of the sweep an exact correspondence
between the lowest levels of the programmable architecture and the
original model of classical spins is achieved (dashed lines).
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1. INTRODUCTION
1.1. QUANTUM ADIABATIC OPTIMIZATION
Recently, there has been much interest in the possibility of using
adiabatic quantum optimization (AQO) to solve NP-complete
and NP-hard problems [1, 2] 1. This is due to the following
trick: suppose we have a quantum Hamiltonian HP whose ground
state encodes the solution to a problem of interest, and another
Hamiltonian H0, whose ground state is “easy” (both to find and
to prepare in an experimental setup). Then, if we prepare a quan-
tum system to be in the ground state of H0, and then adiabatically
change the Hamiltonian for a time T according to

H(t) =
(

1 − t

T

)
H0 + t

T
HP, (1)

then if T is large enough, and H0 and HP do not commute,
the quantum system will remain in the ground state for all
times, by the adiabatic theorem of quantum mechanics. At time
T, measuring the quantum state will return a solution of our
problem.

There has been debate about whether or not these algorithms
would actually be useful: i.e., whether an adiabatic quantum opti-
mizer would run any faster than classical algorithms [3–9], due to
the fact that if the problem has size N, one typically finds

T = O
[

exp
(
αNβ

)]
, (2)

in order for the system to remain in the ground state, for pos-
itive coefficients α and β, as N → ∞. This is a consequence of
the requirement that exponentially small energy gaps between
the ground state of H(t) and the first excited state, at some
intermediate time, not lead to Landau–Zener transitions into

1In this paper, when a generic statement is true for both NP-complete and
NP-hard problems, we will refer to these problems as NP problems. Formally
this can be misleading as P is contained in NP, but for ease of notation we will
simply write NP.

excited states [5] 2. While it is unlikely that NP-complete prob-
lems can be solved in polynomial time by AQO, the coeffi-
cients α, β may be smaller than known classical algorithms,
so there is still a possibility that an AQO algorithm may be
more efficient than classical algorithms, on some classes of
problems.

There has been substantial experimental progress toward
building a device capable of running such algorithms [11–13],
when the Hamiltonian HP may be written as the quantum ver-
sion of an Ising spin glass. A classical Ising model can be written
as a quadratic function of a set of N spins si = ± 1:

H (s1, . . . , sN) = −
∑

i < j

Jijsisj −
N∑

i = 1

hisi. (3)

The quantum version of this Hamiltonian is simply

HP = H
(
σz

1, . . . , σ
z
N

)
(4)

where σz
i is a Pauli matrix (a 2 × 2 matrix, whose cousin (1 +

σz
i )/2 has eigenvectors |0, 1⟩ with eigenvalues 0, 1) acting on the

ith qubit in a Hilbert space of N qubits {|+⟩, |−⟩}⊗N , and Jij and
hi are real numbers. We then choose H0 to consist of transverse
magnetic fields [11]:

H0 = −h0

N∑

i = 1

σx
i , (5)

so that the ground state of H0 is an equal superposition of all pos-
sible states in the eigenbasis of HP [equivalent to the eigenbasis
of the set of operators σz

i (i = 1, . . . , N)]. This means that one

2If one is only interested in approximate solutions (for example, finding a
state whose energy per site is optimal, in the thermodynamic (N → ∞) limit,
as opposed to finding the exact ground state), one expects T = O(Nγ) [5, 10].
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other words, an optimal set of coe�cients ci has to be
found. This can be done by standard tools: usually by
the Nelder-Mead simplex algorithm [17] that does not
rely on gradients. A standard choice for the basis func-
tions are trigonometric functions, often multiplied by a
shape function 1/�(t) that fixes the pulse to 0 at the
edges.

A possible disadvantage of CRAB is the limited band-
width of the pulse or more in general the limited dimen-
sion Df of the search space or function space which ba-
sically scales with the number of coe�cients N (N < Df

since the randomization of the basis e↵ectively allows
to engineer a di↵erent N -dimensional function space for
each instance of N random frequencies). However, recent
e↵orts [18] show that the number of frequencies N needed
to accomplish a control task in a system space of dimen-
sion Ds up to an error " scales polynomially with the di-
mension of the set of time-polynomially reachable states
Dr < Ds. Since only certain time dynamics (given by
the control path) can be e�ciently simulated (e.g. simu-
lating many-body systems by matrix product states) the
real set of reachable states is still smaller then dimen-
sion Dr. It follows that for a many-body system with
L sites that can be e�ciently simulated by matrix prod-
uct states, all time-polynomially reachable states can be
reached with a number NL of CRAB coe�cients that
scales polynomially with the lattice size L.

A. dCRAB

Due to the restriction of the search basis to NC dimen-
sions given by the CRAB expansion, equation (1) the al-
gorithm might converge to a non-optimal fix point. To
overcome this problem we start a new CRAB optimiza-
tion from this fix point with a new random basis and new
coe�cients. We do this in an iterative way so that in the
j-th super-iteration we optimize the coe�cients cj

i
of

f
j(t) = f

j�1(t) +
NCX

i=1

c
j

i
f
j

i
(t) , (2)

where f
j

i
(t) are randomly chosen to be sine or cosine

functions with random frequencies out of some inter-
vall [0,!max]. So in each super-iteration the old pulse is
dressed with new search directions and we call this pro-
cedure dressed Chopped Random Basis (dCRAB) [16]
algorithm.

In the following section we give a theoretical explana-
tion why this is a substantial improvement of the algo-
rithm by analyzing how it influences the control land-
scape.

III. CONTROL LANDSCAPES AND CRAB

In this section we review the theory on control land-
scapes [1, 2] and how they can explain convergence or

1

|⇣i

F (| (T )i)

| (T )i

1

f1 f2

J(f)

f

Uf1(T )|⇠i = Uf2(T )|⇠i = |⇣i

FIG. 1. Schematic view on the control landscape J(f) =
F (| (T )i). While F has a clear maximum at |⇣i (left), this
state can be reached by di↵erent control functions f1 and f2
corresponding to multiple maxima in the landscape J (right).

trapping of the algorithm. Especially we want to focus
on why CRAB can be trapped in cases where gradient
methods as well as dCRAB cannot be trapped. For a con-
trol problem with control f the control landscape [1, 2]
is the function J(f) with

J(f) = F (| (T )i) (3)

where | (T )i is the final state resulting from time evolu-
tion with the given control f and F is the fidelity of the
process. In other words, the control landscape is the de-
pendency of the fidelity on the control field. In our case
the fidelity will be the state overlap of the final state with
a given target state

F (| (T )i) = |h⇣| (T )i|2 , (4)

and the time evolution is given by the Schrödinger equa-
tion

i
@

@t
| (t)i = (H0 + f(t)H1) | (t)i

| (0)i = |⇠i . (5)

The two di↵erent ways to look at the control landscape
are depicted in figure 1. As mentioned, for convenience
we limit the analysis to a state to state transfer, but the
same arguments apply also for other scenarios like gate
optimization and expectation value optimization. Opti-
mization usually leads to so-called critical points of the
landscape, that is the ones fulfilling the condition

�J = hrF ( (T ))|� (T )i = 0 8 �f , (6)

i.e. a vanishing variation of the functional J for a vari-
ation of the control f . By the chain rule this variation
consists of two parts: the gradient of the fidelity as a
function of the final state, and the variation of the fi-
nal state as a result of the variation of the control. The
first part is well understood and for all common choices
of the fidelity a vanishing gradient rF ( (T )) = 0 cor-
responds to the global maximum, global minimum or a
saddle point [1, 2, 6], more specifically in our case there

min
f(t)

J(| (T )i)

➤ Few-body: standard optimal control  
(high-accuracy, many iterations, complete knowledge…) 

➤ Many-body: dCRAB  
(high-efficiency, few iterations, minimal knowledge…)

H. Rabitz et.al. NJP (2009)      P. Doria et al.  PRL (2011)



OPTIMAL QUANTUM COMPUTING

E

t
E

t

Optimal
control

Adiabatic
strategy Slow

Fast

Phase I

Phase II

ar
X

iv
:1

01
1.

66
34

v1
  [

co
nd

-m
at

.o
th

er
]  

30
 N

ov
 2

01
0

Speeding up critical system dynamics through optimized evolution.
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(Dated: January 1, 2011)

The number of defects which are generated on crossing a quantum phase transition can be min-
imized by choosing properly designed time-dependent pulses. In this letter we determine what are
the ultimate limits of this optimization. We discuss under which conditions the production of de-
fects across the phase transition is vanishing small. Furthermore we show that the minimum time
required to enter this regime is T = π/∆ unveiling an intimate connection between an optimized
unitary dynamics and the intrinsic measure of the Hilbert space for pure states. Surprisingly, the
dynamics is non-adiabatic, this result can be understood by assuming a simple two-level dynamics
for the many-body system.

PACS numbers:

Introduction.— The rapid progress in the experimen-
tal realization and manipulation of quantum systems [1]
is opening the rich and intriguing perspective of the ex-
ploitation of quantum physics to realize quantum tech-
nologies like quantum simulators [2] and quantum com-
puters [3, 4]. These achievements pave the way to the
simulation of condensed matter systems giving the possi-
bility of studying different states of matter in controlled
experiments. Despite the impressive results obtained so
far, this is a formidable technological and theoretical
challenge due to the complexity of the systems in analysis
and the experimental requirements. Indeed, the level of
control needed on the quantum system is unprecedented:
one should be able to prepare a system in a desired initial
state, perform the desired evolution and finally measure
the state in a very precise way. Moreover, the whole
experiment should be performed faster than the system
decoherence time that eventually will destroy any quan-
tum information capability.
Quantum optimal control (OC) theory, the study of op-
timization strategies to improve the outcome of a quan-
tum process, can be an extremely powerful tool to cope
with these issues [5–9]. It allows not only to optimize
the desired experiment outcome but also to speed up
the process itself. Traditionally employed in atomic and
molecular physics [10, 11], OC has been recently ap-
plied with success to the optimization of the dynamics
of many-body systems [12, 13], allowing to achieve the
ultimate bound imposed by quantum mechanics, the so
called quantum speed limit (QSL) [14]. Indeed as intu-
itively suggested by the time-energy uncertainty princi-
ple, the time required by a state to reach another dis-
tinguishable state has to be longer than the inverse of
its energy fluctuations [15]. This implies that a quan-
tum system cannot evolve at an arbitrary speed in its
Hilbert space, but a minimum time is required to per-
form a transformation between orthogonal states [16–20].
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FIG. 1: (Color online) Instantaneous excitation energy in the
LMG model for an optimized (green dashed line, total time
T ∼ TQSL), a non optimized (red dot-dashed line, T ∼ TQSL)
and a linear adiabatic process (orange continuous line, T ≫
TQSL). Continuous (blue) lines represents the lowest energy
levels as a function of the driving field Γ = −t/T .

For time-independent Hamiltonians this bound has been
exactly determined [14]; the QSL has been formally gen-
eralized also to time-dependent Hamiltonians, but so far
has been computed only in a few simple cases [12, 21–23].
A still unexplored, although relevant question is how the
dynamical crossing of a quantum phase transition (QPT)
affects this fundamental bound. Here we investigate for
the first time the QSL of the dynamics of a first order
QPT in the adiabatic version of Grover’s search algo-
rithm (GSA) [24] and of a second order QPT [25] in
the Lipkin-Meshkov-Glick (LMG) model. Specifically we
consider the problem of converting the ground state on
one side of the critical point into the ground state on the
opposite side in the fastest and most accurate way by se-
lecting an optimal time-dependence of the control field.
We emphasize here that the evolution induced by the op-
timized field is non-adiabatic, as shown in Fig. 1, where
the scenario is reproduced for the LMG model, and an

4

20 40 60 80 100
N
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10-6

10-4
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1f1

Initial
Optimized

LMG model: T/TQSL=2

FIG. 3: (Color online) Infidelity as a function of the size in
the LMG model. Squares represents the data before the opti-
mization, circles the data after the optimization with CRAB.

reversed separable state |ψ1
G⟩ = |11⟩, the homogeneous

superposition state |ψ2
G⟩ = 1

2

∑

i,j |i, j⟩, and the maxi-

mally entangled Bell state |ψ3
G⟩ =

1
√

2
(|00⟩+ |11⟩). Note

that due to the fact that only the coupling is controlled,
all three states are not trivial to achieve. We set the to-
tal time of the transformation to the somehow arbitrary
time scale T = π/EJ and we perform a CRAB optimiza-
tion using the truncated expansion of the function g(t)
given in Eq. (9), with a constant initial guess for the driv-
ing field Γ0(t) = Γ(0) = 1. We considered an additional
constraint on the fluence of the control field, thus the
resulting cost function is defined as

F = f1 + 0.1 C1(Γ(t)), (11)

where f1 and C1 are given by equations (1) and (4) re-
spectively. Here we are interested in studying the effect
of the randomness introduced in the frequencies of the
expansion (9), thus we optimize both in the case of ran-
dom rk and with rk = 0. To perform a fair compari-
son, we ran the optimization in both cases with the same
maximum number of calls Nf ∼ 30.000 to the function
F , which fixes the simulation complexity. Indeed, in the
first case we repeated the optimization for thirty different
rk random configurations (with a single Ak, Bk random
starting point), while in the second case the optimization
was repeated over thirty initial random Ak, Bk configura-
tions. A typical result is shown in Fig. 1 for Nc = 6 and
|ψ3

G⟩: it clearly shows that for the case of randomized ωk

the optimization is highly improved. A more systematic
comparison is shown in Fig. 2 where the best results are
plotted against the number of optimization parameters
Nc for the three target states |ψi

G⟩: in all cases, the ran-
domization of the frequencies improves the final results
by about an order of magnitude or even more. More
importantly, in all three considered cases, the final result
without randomization is very far from being satisfactory
as the final fidelity is of the order of ten percent, result-
ing in a very poor state transformation. On the contrary,

0 2 4 6 8 10 12 14 16
2 Nc

10-10

10-8

10-6

10-4
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N=100

0 4 8 12 16
10-8
10-6
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10-2

1LMG model: T/TQSL=2

FIG. 4: (Color online) Infidelity as a function of the number of
control parameters for different sizes in the LMG model. The
total evolution time is T = 2TQSL = 2π∆. Inset: infidelity
as a function of the number of parameters for a single size
N = 32: comparison between data optimized using as cost
function the infidelity (empty circles) and the final energy (full
circles). Green squares represent the results with randomized
frequencies.

using the randomized frequencies we were able to find op-
timal pulses to obtain fidelities below one percent for two
cases out of three – values that are comparable, in most
cases, with experimental errors.

III. LIPKIN-MESHKOV-GLICK MODEL

The Lipkin-Meshkov-Glick (LMG) model is the
paradigm of a system with long range interaction (in-
finite in the thermodynamical limit). The Hamiltonian
in dimensionless units is written as [31, 32]:

H = −
1

N

∑

i<j

(σx
i σ

x
j + γσy

i σ
y
j )− Γ(t)

N
∑

i

σz
i , (12)

where N is the number of spins in the system, Γ is the
transverse field and σα

i are the Pauli matrices. By intro-
ducing the total spin operator Sα =

∑

i σ
α
i /2, Eq. (12)

can be rewritten, apart from an additive constant, as
H = − 1

N [S2
x + γS2

y ]−ΓSz . The Hamiltonian hence com-
mutes with S2 and does not couple states having a differ-
ent parity in the number of spins pointing in the magnetic
field direction: [H,S2] = 0 and [H,

∏

i σ
z
i ] = 0. In the

isotropic case γ = 1, also the z-component of S⃗ is con-
served, [H,Sz ] = 0. In the thermodynamical limit the
LMG model undergoes a second order quantum phase
transition at Γc = 1 from a paramagnet (Γ > 1) to a fer-
romagnet (Γ < 1). The phase transition is characterized
by mean-field critical exponents [32]. The phase tran-
sitions dramatically affects the dynamical behavior of
quantum systems: As discussed in more detail in Sec. VI,
the gap closure at the critical point promotes dynamical
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FIG. 1: CRAB scheme: A) An inital guess pulse c0(t) is used
as starting point. B) The function F(ω⃗) for the case ω⃗ =
{ω1, ω2} and the initial polytope (ligh red triangle) are defined
and moved “downhill” (darker triangles) until convergence is
reached. C) The final point is recasted as the optimal pulse
c(t) and applied to the physical system.

integrated with t-DMRG, and thus can in principle be
applied to all systems that can be efficiently simulated
by tensor network methods. Triggered by the observa-
tion that optimal control optmizations result in pulses
with very simple Fourier spectrum [22] we develop an
optimal search in a truncated dual space, the Chopped
RAndom Basis (CRAB) optimization, that can be effi-
ciently applied to t-DMRG simulations. The scenario we
are thinking of is as follows: given a system of interested
described by an Hamiltonian H with some controls cj(t)
with j = 1, . . . , NC , the goal is to extremize a given fig-
ure of merit F [H(cj(t))], e.g. the final system energy,
state fidelity, entanglement, etc. The main idea is then
to start with an initial pulse guess c0

j(t) and then looking
for the best correction of the form

cj(t) = c0
j(t) · fj(t), (1)

where fj(t) can be expressed in a simple form in some
function basis, as for example, Fourier space, and de-
pends on some parameters ω⃗j = ωk

j (k = 1, . . . , Mj), see
Methods for details. The optimization problem is then
recasted in a extremization of a multivariables function
F(ωk

j ) that can be numerically approached with the pre-
ferred method, as for example, stepeest descent or conju-
gate gradient method [25]. While using CRAB together
with t-DMRG, computing the gradient of F is extremely
resource consuming and thus we resort to a Direct search
method as Nelder-Mead or simplex methods [25]. They
are based on the construction of a polytope defined by
some initial set of points in the space of parameters ω⃗j

that “rolls down the hill” following defined rules up to
reach the (possible local) minima (see Fig. 1 and Meth-
ods). Due to the fact that the Direct Search methods
are based on many independent evaluation of the func-
tion to be minimized, they can be efficiently implemented
together with t-DMRG simulations.

In this letter, the CRAB optimization is applied to
the preparation of a Mott insulator in cold atoms exper-
iments in optical lattice [11]. Indeed, very recently this











 






 

FIG. 2: Scheme of the Mott-Superfluid transition in the ho-
mogeneous system for average occupation number ⟨n⟩ = 1:
increasing the lattice (black line) depth V , the atoms Super-
fluid wave functions (upper) localize in the wells (lower). If
the transition is not adiabatic or optimized defects appear
(here represented by a hole and a double occupied site).

field have experienced a fast development after the exper-
imental demonstration of coherent control of the atoms
subject to a parameter quench in the seminal work of
M.Greiner and coworkers [12]. In these experimental se-
tups a Bose-Einstein condensate is first loaded in a mag-
netic trap and then the optical lattice is slowly switched
on inducing a quantum phase transition to a Mott insu-
lator. This is the fundamental initial step to prepare a
one dimensional system for further investigations as for
recent experiments on transport or spectroscopy [11]. Up
to now, the described Superfluid-Mott insulator transi-
tion has been performed adiabatically in about one hun-
dred ms: we present an optimal pulse to obtain a faithful
ground state with density of defects below one per cent
(???) in a total time of the order of some milliseconds.
This new optimal process allows for a drastic reduction
(about two orders of magnitude) of the time needed to
initialize cold atoms in optical lattice in a desired initial
state, a fundamental step in any quantum information
processing and cold atoms in optical lattice experiments.

Cold atoms in opticall lattice can be mapped in the
Bose Hubbard model defined by the Hamiltonian [11, 14]:

H=
∑

j

[−J(b†jbj+1+h.c.)+Ω(j−
N

2
)2nj+

U

2
(n2

j−nj)]. (2)

The first term on the r.h.s. of Eq.(2) describes the tunnel-
ing of bosons between neighboring sites with rate J , Ω is
the curvature of the trapping potential, and nj = b†jbj is
the density operator with bosonic creation (annihilation)
operators b†j (bj) at site j = −N/2, . . . , N/2−1. The last
term is the onsite contact interaction with energy U . The
system parameters U and J can be expressed as a func-
tion of the optical lattice depth V [11]. As sketched in
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FIG. 5: Panel A: Figure of merit FN as a function of di↵erent atom number Na in the system for a QPT crossing lasting TOPT

with a linear ramp (red squares) and an optimal pulse obtained consider atom number fluctuations (blue circles). Panel B
and C: Comparison between numerical and experimental parity distribution. The left plot shows the results for the fast linear
pulse, the numerical result (filled) compared to the experimental result (solid line). The right plot shows the numerical results
for the optimized pulse (filled regions) and the experimental results for the optimized pulse (blue line) in comparison with the
result of an adiabatic pulse (red line). Green regions represent the on-site atom number fluctuations profile h�n2

i i at the end
of the linear (left) and optimal (right) process. Panel D: typical experimental result, where the occupation parity distribution
(red odd occupied, light blue even occupied) is calculated from in-situ imagining of many independent one-dimensional tubes
(vertical coloured areas).

shown in Fig. 5 D, i.e. the results are obtained without post-processing on the atom number demonstrating that the
designed optimal process is robust with respect to atom number fluctuations. Indeed the atom number fluctuates
up to ??? per cent from tube to tube and between di↵erent repetitions of the experiment performed to accumulate
statistics.

Conclusions

We have experimentally performed two paradigmatic optimal processes in many-body cold atom systems at the
QSL: the optimal preparation of the motional state of a BEC on a trap and a quantum phase transition crossing.
We demonstrated that optimal many-body processes can be engineered and implemented and that they can saturate
the limiting theoretical bounds. We have shown that the optimal processes are robust with respect to experimental
imperfections and stable against atom number fluctuations (that are unavoidably without post-processing of the data),
paving the way to a systematic exploitation of optimal control in next generation of cold atoms experiments. The
optimal preparation of excited states of cold atoms in the atom chip, performed with an unprecedented fast process,
open new perspectives to the development of accurate and sophisticated protocols for sensing, interferometry and cold
atoms manipulations. The numerical and experimental results on the QPT crossing demonstrated that the quality
of the fast optimal protocol is the same to that obtained by means of the adiabatic one. This experiment show that
along the same lines, the generic adiabatic quantum computations scheme can be in principle performed in a fast and
optimal way (i.e. not adiabatically).

In conclusion, the speedup of these processes naturally reduces the detrimental e↵ects of decoherence in the system
and thus pave the way to the experimental realization of protocols of increasing complexity in the next future.

Methods

A. optimal control

Optimal control theory is devoted to find the solution to functional minimizations of the form minV (t) F(V (t)),
where V (t) is the control field and F a figure of merit to be computed via a dynamical law that describe the time
evolution of the system. In QOC problems, the dynamical law is given by a Liouvillian equation for the system density
matrix, which for pure states reduces to the time-dependent Schrödinger equation. Typical figures of merit are the
fidelity of the final state with respect to some given target state, the final energy of the system or some other interesting
properties of the final state or of the path followed between the initial and the final state. Finally, figures of merit might
include also constraints as the maximal power used to drive the system, the limited band-width of the control field or
any other experimental constraints to be satisfied. In this work we employ the CRAB optimal control approach, that is,
the optimization is implemented looking for an optimal pulse of the form V (t) = V0(t) f(t), where V0(t) is some guess
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for the optimized pulse (filled regions) and the experimental results for the optimized pulse (blue line) in comparison with the
result of an adiabatic pulse (red line). Green regions represent the on-site atom number fluctuations profile h�n2

i i at the end
of the linear (left) and optimal (right) process. Panel D: typical experimental result, where the occupation parity distribution
(red odd occupied, light blue even occupied) is calculated from in-situ imagining of many independent one-dimensional tubes
(vertical coloured areas).

shown in Fig. 5 D, i.e. the results are obtained without post-processing on the atom number demonstrating that the
designed optimal process is robust with respect to atom number fluctuations. Indeed the atom number fluctuates
up to ??? per cent from tube to tube and between di↵erent repetitions of the experiment performed to accumulate
statistics.

Conclusions

We have experimentally performed two paradigmatic optimal processes in many-body cold atom systems at the
QSL: the optimal preparation of the motional state of a BEC on a trap and a quantum phase transition crossing.
We demonstrated that optimal many-body processes can be engineered and implemented and that they can saturate
the limiting theoretical bounds. We have shown that the optimal processes are robust with respect to experimental
imperfections and stable against atom number fluctuations (that are unavoidably without post-processing of the data),
paving the way to a systematic exploitation of optimal control in next generation of cold atoms experiments. The
optimal preparation of excited states of cold atoms in the atom chip, performed with an unprecedented fast process,
open new perspectives to the development of accurate and sophisticated protocols for sensing, interferometry and cold
atoms manipulations. The numerical and experimental results on the QPT crossing demonstrated that the quality
of the fast optimal protocol is the same to that obtained by means of the adiabatic one. This experiment show that
along the same lines, the generic adiabatic quantum computations scheme can be in principle performed in a fast and
optimal way (i.e. not adiabatically).

In conclusion, the speedup of these processes naturally reduces the detrimental e↵ects of decoherence in the system
and thus pave the way to the experimental realization of protocols of increasing complexity in the next future.

Methods

A. optimal control

Optimal control theory is devoted to find the solution to functional minimizations of the form minV (t) F(V (t)),
where V (t) is the control field and F a figure of merit to be computed via a dynamical law that describe the time
evolution of the system. In QOC problems, the dynamical law is given by a Liouvillian equation for the system density
matrix, which for pure states reduces to the time-dependent Schrödinger equation. Typical figures of merit are the
fidelity of the final state with respect to some given target state, the final energy of the system or some other interesting
properties of the final state or of the path followed between the initial and the final state. Finally, figures of merit might
include also constraints as the maximal power used to drive the system, the limited band-width of the control field or
any other experimental constraints to be satisfied. In this work we employ the CRAB optimal control approach, that is,
the optimization is implemented looking for an optimal pulse of the form V (t) = V0(t) f(t), where V0(t) is some guess

Speed up of one order of magnitude 

Compatible with the quantum speed limit
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➤ Quantum technologies are fast developing  

➤ Hybrid solutions will play a fundamental role 

➤ Tensor network algorithms can be used to benchmark, verify, 
support and guide quantum simulations/computations 

➤ Synergies between quantum technologies and high-energy 
physics can lead to unexpected developments: 

➤ Sign-problem-free solutions  

➤ Machine learning  

➤ Quantum sensing 

➤ Optimized protocols 
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