The Northeast Quantum Systems Center (NEQsys) -Research and Services in Support of Real Applications

Kerstin Kleese van Dam and Eden Figueroa

Contact: kleese@bnl.gov

BNL Operates and Supports Many Data-rich Facilities

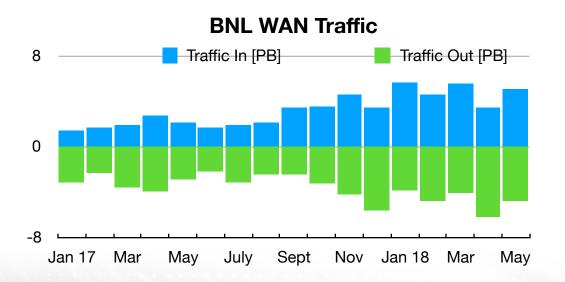
- Relativistic Heavy Ion Collider (RHIC)
- National Synchrotron Light Source II (NSLS-II)
- Center for Functional Nanomaterials (CFN)
- Accelerator Test Facility (ATF)
- LHC ATLAS US Tier 1 Center
- Atmospheric Radiation Measurement (ARM) program
- **Belle II**: computing for neutrino experiment
- Quantum chromodynamics (QCD)
 computing facilities for BNL, RIKEN, and
 U.S. QCD communities

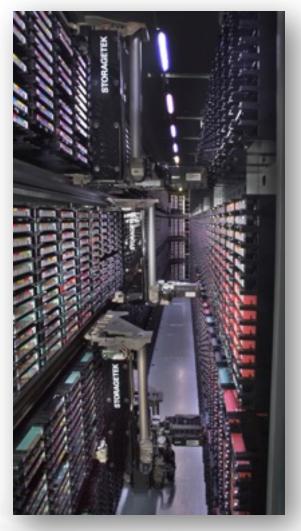
RHIC

NSLS II

CFN

ATLAS


QCD



BNL Data by the Numbers

- Largest scientific archive in the U.S.; among the top five in the world (ECMWF, UKMO, CERN)
- ~145 PB archived to date
- ~110PB Data Transfer per Year



Key Challenge Examples at BNL's Large-scale Facilities

- Real-time Analysis and Steering of Experiments—Challenges:
 - CFN-400 images/sec
 - NSLS II—up to 5TB/s in burst

- Extreme Scale Data Management and Analysis:
 - 690 PB of data analyzed in FY18
 - Moved data to compute and storage in 2016–1.6 Exabyte

Scalability of Algorithms and Systems is Vital to Meet Our Mission Needs

History of Systems Design to Optimally Support Mission Critical Applications

QCDSP

- Working with Partner Universities: Columbia and Edinburgh
- Systems specifically for QCD
- Optimally balanced
- Forerunner of successful IBM Blue Gene Series

QCDOC

Artificial Intelligence and Machine Learning @ Scale

- Leading experts in Streaming Machine Learning
- Leaders of ExaLearn: Machine Learning at Exascale
- Machine Learning for High Energy Physics: LHC Atlas and SciDAC Resource and Application Productivity through computation, Information, and Data Science (RAPIDS)
- Al-driven Optimal Experimental Design
- Partner University: Carnegie Mellon

 Exploration of new architectures to better support high-throughput, high-volume data analysis - FPGA/ CPU systems, DGX-2, Neuromorphic, Quantum

Nallatech 510T field-programmable gate array (FPGA) card:

- 2.8 TeraFLOPs
- 290 GB/s Peak Aggregate Memory Bandwidth

The Same Principle Applies: Leverage and Adapt Quantum Computing to Optimally Support Our Core Missions

North East Quantum Systems Center (NEQsys)

- Collaborative environment for research and integration across the spectrum of activities, from theoretical and experimental materials science and condensed matter physics to devices/ systems and system software to algorithms and computational applications
- University Partners: Harvard,
 MIT, Princeton, Stony Brook,
 Columbia, Toronto, Tufts, Yale,
- Industry Partners: Raytheon



NEQsys: Focus

Potential Activities

- Collaborative Projects
- Joint Appointments
- Visiting Faculty
- Student/postdoc exchanges REs
- Workshops
- Colloquia
- Summer School
- University inter-movement
- Masters Degree in quantum computing
- Problem market

Why NEQsys?

- Bringing together and leveraging wealth of research at leading universities and in industry.
- Collaboration with BNL at its center can provide knowledge integration across the hardware/software stack to impact work across institutions.
- Cross-cutting effort will adapt algorithm and software stack developments, quantum system size and architectures, enhance connectivity, and measure fidelity, impacting the entire quantum ecosystem.
- Moderately sized system (5-20 qubit) at BNL.
- Unique characterization capabilities at BNL.

Quantum Simulations

Some of our application drivers, and support tool research

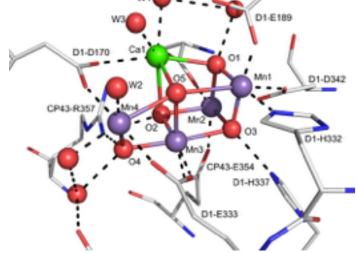
Foundations of Quantum Computing for Gauge Theories and Quantum Gravity

- Develop fundamental building blocks of quantum computing relevant to problems in high energy physics that are beyond the reach of classical computing
- Scalable Quantum Codes in four Space-Time for the Evolution of Hadrons in Collider Experiments, the Early Universe and New Models of Gravity

00 cm

- Partners: BNL (M. McGuigan), BU (R. Brower), MIT (S. Lloyd), MSU (A. Bazavov), Syracuse (Catterall), U. of Iowa (Y. Meurice, PI), U. of Maryland/Microsoft (S. Jordan), UCSB (D. Berenstein and X. Dong)
- Funded by DOE office of High Energy Physics

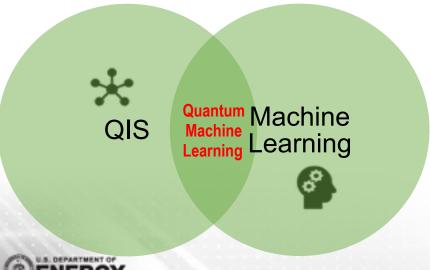
Accelerating State Preparation in Quantum Field Theory Calculations on a Universal Quantum Computer


- One of the profound problems in applications of quantum computing for Quantum Field Theory (QFT) involves the preparation of quantum states used in matrix elements and further time evolution
- Broad research program to study optimal ways to prepare states for simple QFTs
- Partners: BNL (Hooman Davoudiasl, Christoph Lehner), RIKEN (Taku Izubuchi)
- Funded by BNL

Quantum *Ab Initio* Modeling of Photosynthesis

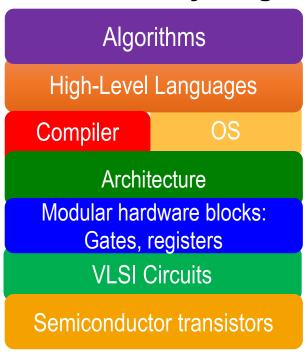
- Catalysis
 - Poses an NP hard problem
- Approach
 - Combine conventional and quantum computers for even more power
- Methods to be explored
 - Embedding combined with variational quantum eigensolver (VQE)
 - Quantum subspace expansion (QSE) extends VQE for properties in the linear response regime
 - Witness-assisted variational eigenspectra solver (WAVES) extends VQE for excited states

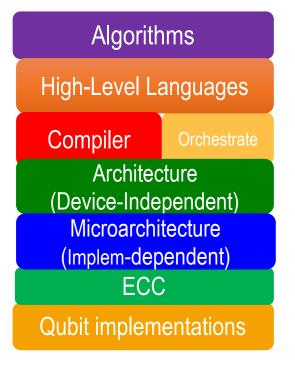
Partners: **BNL** (Mehmed Ertem, Huub van Dam), **Harvard** (Prineha Narang), LBNL (Bert de Jong), **MIT** (Seth Lloyd), **Toronto** (Alán Aspuru-Guzik), **Tufts** (Peter J. Love)


Initial Funding by New York State

Input/Output Efficient Quantum **Machine Learning**

- Initial work showed state of the art machine learning models face two key challenges - data loading and encoding
- Need to improve ML algorithms and QS I/O hardware through new qRAM designs.


- Plans
 - Self error-correcting machine learning algorithms with redundancy
 - Compress input data into better representation for QIS using classical machine learning techniques
 - Improve representation power during compression by incorporating latest advances in deep representation learning
- Partners: BNL, CMU, Stony Brook
- **Funded by New York State**



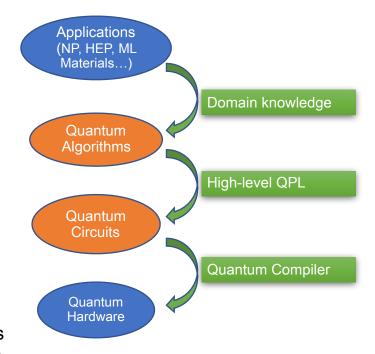
Better Support For Quantum System Programming

Classical Layering

Quantum Toolflows

High-level QC Languages.
Compilers.
Optimization.
Error Correcting Codes
Orchestrate classical gate
control,
Orchestrate qubit motion and
manipulation.

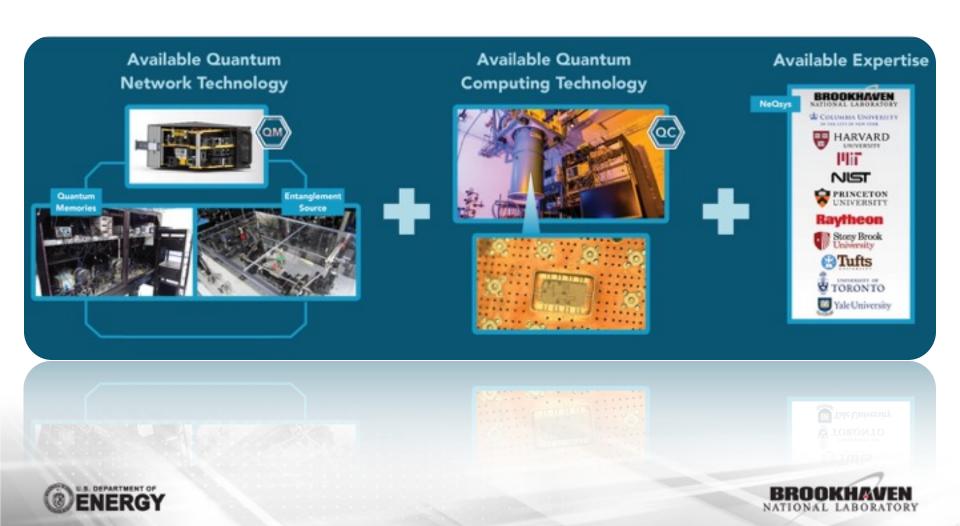
UNIVERSITY


Margaret Martonosi, Princeton, NSF funded

NISQ-era Quantum Algorithms and Compiling Support

- The applications of existing and near-term quantum computers are limited by
 - Small number of qubits
 - Short decoherence time
 - Lack of error correction.
- To broaden the range of applications accessible on near-term quantum computers, we will need to make use of the available qubits effectively by developing
 - Algorithms that require fewer qubits
 - Compiling tools that map quantum algorithms into shorter circuits.
- · This project aims to
 - Optimize high-level algorithms to reduce the number of gate counts for potential high energy physics applications
 - Translate the optimized quantum circuit to low-level pulse sequences guided by physics and qubit topology.
- Partners: BNL (Meifeng Lin, Leo Fang)

Funded by BNL Laboratory Directed Research Development #19-002

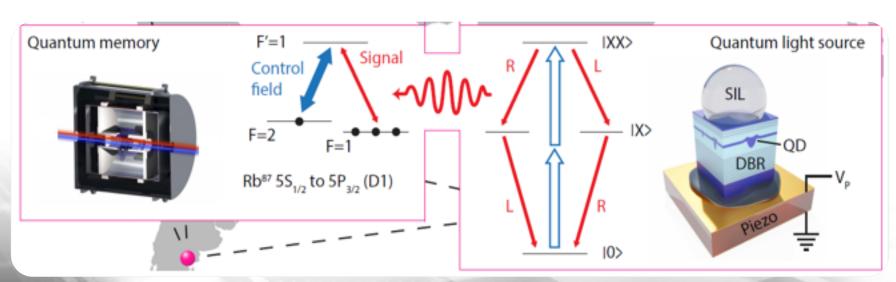


Integrated Quantum Communication and Computation Research and Testbed Facility

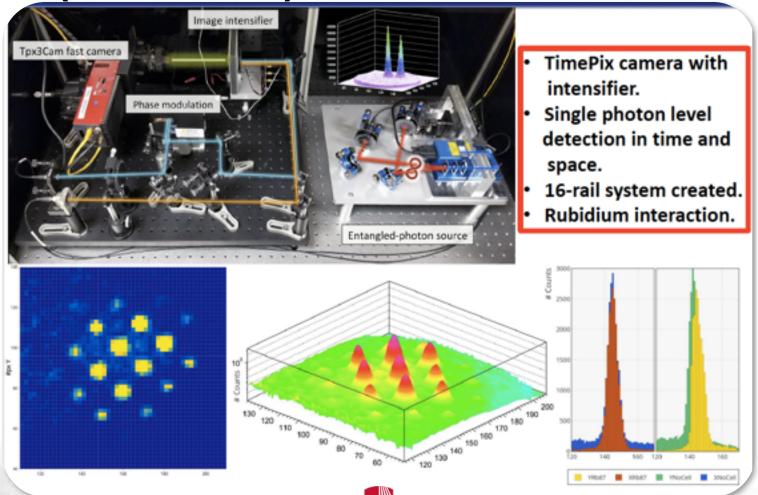
Developing the First Integrated Quantum Network and Computing Infrastructure

Quantum Computing System at BNL

- CSI has formed a collaboration with Raytheon-BBN Technologies and the National Institute of Standards and Technology (Boulder, CO) to build a Quantum Information Science (QIS) system at BNL.
- Initial system will include a 5-qubit superconducting quantum processor (5QP), the required cryo and room temperature management and readout electronics, and will be housed in a dilution fridge. Expect to upgrade to 20-qubits in year one.
- We will work with Stony Brook University on integrating Quantum Networking directly into the QIS system.
- Partners: BNL (Nick D'Imperio, Adolfy Hoisie, Layla Hormozi)
 NIST (David Pappas), Raytheon (Thom Ohki)
- Funded by New York State

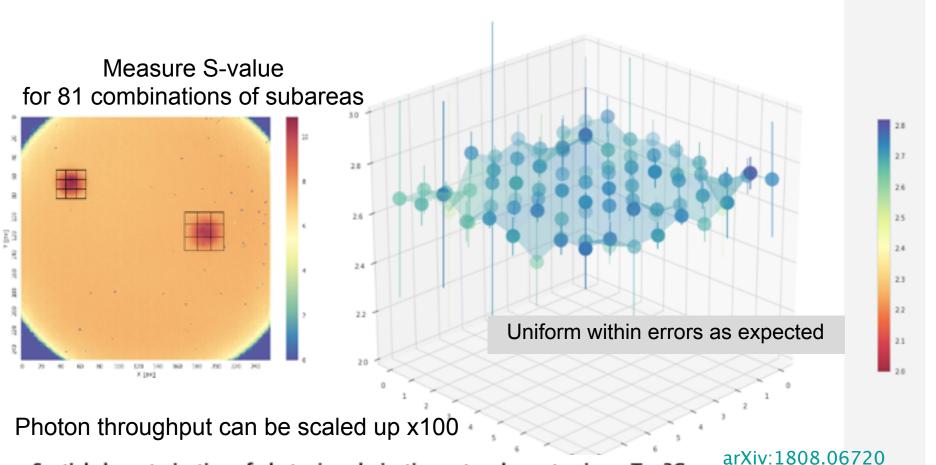


Scalable Room Temperature Quantum Networks


- Room-temperature operation
- Laboratory based and fully portable
- Miniaturized for real networks and outside lab storage
- Interaction with entangled photons from Quantum Dots (SBU/ KTH)
- Electromagnetically Induced Transparency with Quantum Dot Photons

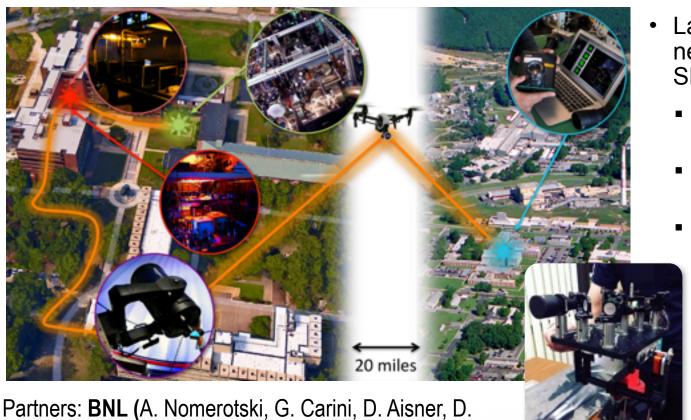
Eden Figueroa

Scaling and Multiplexing: A Quantum Grid (SBU/BNL)



High-dimensional spatial entanglement

Spatial characterization of photonic polarization entanglement using a Tpx3Cam intensified fast-camera


Submitted to

Christopher Ianzano, Peter Svihra, Mael Flament, Andrew Hardy, Guodong Cui, Andrei Nomerotski, Eden Figueroa

In Development: Quantum Network Connecting SBU and BNL

Stony Brook University

Partners: **BNL** (A. Nomerotski, G. Carini, D. Aisner, D. Katramatos), **SBU** (E. Figuaroa, D. Schneble, A. von der Linden)

uei Liliueii)

 Large quantum network connecting SBU and BNL

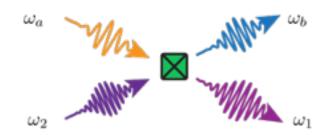
- Quantum imaging of photons
- Quantum cryptography
- Entanglement over long distances

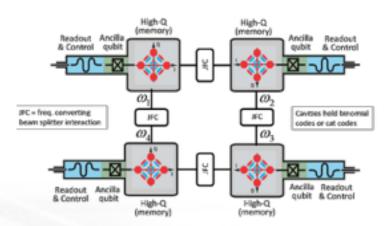
200 miles, through NY, utilizing existing fibre (ESNET, LIMAN)

Research and Support for the Development of Future Quantum Computation Systems

New Cryo Electronic Solutions for Faster and Easier Readout and Control

- Commercial CMOS processes can be used to design circuits that operate at Temperatures << 4K
- This allows the tight integration of existing electronics concepts and interface with qubits
- Has potential to support the implementation of various types of qubit
- Scaling advantages compared to other approaches due to:
 - Proven high density and high speed connections to warm electronics
 - Integrated electronics allows easier interfaces to readout and control at << 4K
 - Small parasitics and high bandwidth enable fast readout and control
- Leverage our experience with cryogenic electronics for HEP
- Funded by BNL

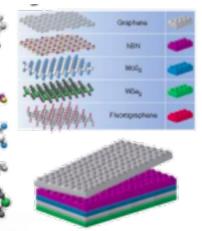

Building "Native" Quantum Errorcorrected Qubits | Yale University


- Simple, repeatable modules based on Photonic Qubits
- Error correction built into lowest level
 - Hardware-efficient logical data qubits
- Intermodule Coupling
 - Error correctable quantum communication
 - Remote teleportation of gate operations
- Replace physical qubits with photon states stored in high, High-Q cavities
- Three code-independent, on-demand operations between two bosonic modes in cQED:
 - SWAP
 - First deterministic C-SWAP
 - First E-SWAP
- Useful ingredients for universal quantum computation, quantum machine learning, etc.
- Funded by NSF

Steve Girvin

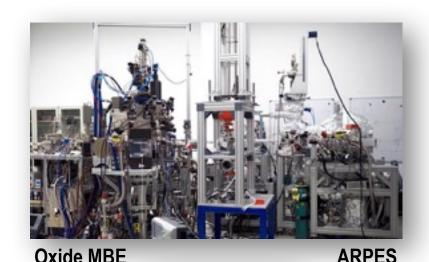
QuantumInstitute.Yale.edu

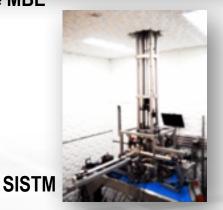
NSF funded



Quantum Material Press: Unique Facility for Automated Synthesis of Layered 2D Material Heterostructures

- CFN awarded \$5.7 million to construct the Quantum Material Press.
- Atomically-thin 2D materials are well-known candidates for nextgeneration QIS.
- Layered heterostructures can be designed to support exotic electronic excitations for novel QIS schemes.
- Condensed Matter Physics & Materials Science Department (CMPMSD) has robust expertise in synthesis of bulk crystals for use as QPress feedstocks.
- Existing and planned NSLS-II beamlines particularly well suited for characterizing 2D materials.
- Funded by DOE Basic Energy Sciences





New OASIS: Integrated Synthesis, Characterization, and Visualization Instrument to Address Fundamental QIS Questions

- Strong-correlated oxide materials can be high-temperature superconductors, or high- T_c , and topological materials
- CMPMSD: world-leaders in synthesis and characterization of these materials
- Synergistic with NSLS-II beamlines
- Funded by DOE Basic Energy Sciences

BROOKHAVEN