

Radioactive Ion Beams for Medical Applications II :

CERN-MEDICIS, non-conventional radioisotopes for medical applications

Thierry.stora@cern.ch

University of Oslo,

Spring workshop on nuclear and particle physics

World map of hadrontherapy centers

Directly in the ECRIS

Main parameters for ¹¹C production.

Method	Cyclotron		Target	Reaction	In target	Trap charging time	Injector	Injector repetition ra	ate
	E [MeV]	I[μA]			[pps]	(ms)	[p/injection cycle]	[Hz]	
PET production (production batch)	22	150	N ₂ (≤1 atm)	$^{14}N(p,\alpha)^{11}C$	3×10^{10}	741	1.5×10^8	1.3	T.M. Mendonca et al., CERN-ACC-2014-(
REX-ISOLDE (ISOL)	70	1200	NaF:LiF eutectic	¹⁹ F(p,2 α n) ¹¹ C	4×10^{11}	56	1.5×10^{8}	18	S. Hojo, et al. NIMB 240, 75 (2005).

R. Augusto et al NIMB, 376, 374 (2016)

T. Stora EN-STI - CERN-MEDICIS – Oslo Jan 2017

Pioneering input from well known physicists

¹¹C Beams for combined PET/Hadron therapy

ENCINEERING DEPARTMENT

Comparison of in-beam PET with fragment 12C (11C, 15O) and direct 11C use

T. Stora EN-STI - CERN-MEDICIS - Oslo Jan 2017

¹¹C Principle of PET scan imaging

PET-CT scan imaging

PET scan in nuclear medicine : using molecular probes

Radioisotopes & Nuclear Medicine

nature International weekly journal of science		
Home News & Comment Research Careers & Jobs Current Issue Archive Audio & V	/ideo	F
Archive Volume 504 Issue 7479 News Feature Article		
		_

Radioisotopes: The medical testing crisis

With a serious shortage of medical isotopes looming, innovative companies are exploring ways to make them without nuclear reactors.

Richard Van Noorden

11 December 2013

Classification of isotopes for Medicine:

1. Established isotopes > Industrial suppliers ^{99m}Tc, ¹⁸F, ^{123,125,131}I, ¹¹¹In, ⁹⁰Y

2. Emerging isotopes >

⁶⁸Ga, ⁸²Rb, ⁸⁹Zr, ¹⁷⁷Lu, ¹⁸⁸Re

Small innovative suppliers

3. R&D isotopes > Research labs ^{44,47}Sc, ^{64,67}Cu, ¹³⁴Ce, ¹⁴⁰Nd, ^{149, 152, 155, 161}Tb, ¹⁶⁶Ho, ^{195m}Pt, ²¹¹At, ^{212, 213}Bi, ²²³Ra, ²²⁵Ac,...

New concept of THERAnostics pairs

New radiopharmaceuticals for therapy

Xofigo® has been approved by the FDA (Food Drug Administration) and in Europe for castration resistant prostate cancer with metastasis

1921

2017 Courtesy prof O. Ratib

Advantages: it will target the dispersed tumours

While flying in 2015 to a workshop in Manchester

Advertorial

100

Mikrokugeln gegen Leberkrebs Tiny beads used to treat liver cancer

chen direkt in die Tumore niiziert werden

Die Hirslanden Klinik St. Anna Hirslanden Klinik St. Anna in Lucerne, Switzerland, provides in Luzern führt eine neuartige a new high-dose radiotherapy Behandlung für Lebertumore treatment for liver tumours durch, bei der hohe Strahlungswhich works by injecting tiny dosen mittels kleinster Kügelbeads straight into the tumours

Courtesy Prof. Ratib, ITMI Geneva

ALSYMPCA Phase III clinical trial http://omr.bayer.ca/omr/online/xofig o-pm-fr.pdf

Drug development cycle

NETTER 1 Phase III Clinical trial for Luthatera®

Carcinoid Tumor of the Small Bowel Neuroendocrine Tumour

Progression-Free Survival

Jonathan Strosberg et al. J Nucl Med 2016;57:629

L	
9	
	Advanced Accelerator Applications
L	BRIDGING SCIENCE WITH LIFE

What do we need to know for « useful isotopes ? »

Radio- nuclide	Half- life	E mean (keV)	Εγ (B.R.) (keV)	Range	cross-	fire
Y-90	64 h	934 β	-	12 mm		Estab- lished
I-131	8 days	182 β	364 (82%)	3 mm		isotopes
Lu-177	7 days	134 β	208 (10%) 113 (6%)	2 mm		Emerging isotopes
Tb-161	7 days	154 β 5, 17, 40 e ⁻	75 (10%)	2 mm 1-30 µm		B ^o D
Tb-149	4.1 h	3967 α	165,	25 µm		isotopes:
Ge-71	11 days	8 e⁻	-	1.7 µm		supply-
Er-165	10.3 h	5.3 e⁻	-	0.6 µm	♥	limited!
					localiz	ed

We also need to know the Relative Biological Effectiveness

Nuclear Physics : ISOLDE and MEDICIS

Matched pairs for theranostics

CERN-MEDICIS : A new facility

Today:

Full cycle of isotope production

Non exhaustive isotope availability estimates

				ISO	LDE [†]		CERN-M	EDICIS [†]	CERN-M	IEDICIS 2	GeV 6µA	
Medical	Isotope	Parent	Target	In-ta	arget	RIB	In-target	Extracted	Possible	In-ta	arget	Community
pplication	life	beam	- Ion source	Production rate (pps)	ActivityEOB (Bq)	Eext** (%)	ActivityEOB (Bq)	Activity EOB (Bq)	gain Eext (%)	Activi Extracted EOB	ty EOB/ l Activity (Bq)	Comments
3- therapy/ CT/dosimetry	²¹³ Bi 45.6m	²²⁵ Ac	UCX-Re	1.5E9*	7.2E8	²²¹ Fr 10	2.8E8	2.8E7	50	8.4E8	4.2E8	Only mass separation
,β therapy	²¹² Bi 60.6m	²²⁴ Ac	UCX-Re	1.5E9*	1.4E9	²²⁰ Fr 10	1.7E9	1.7E8	50	5.1E9	2.5E9	Only mass separation
β therapy	¹⁷⁷ Lu 6.7d	¹⁷⁷ Lu RILIS/VD	Ta-Re/ Re-VD5	3.3E9	7.4E8	¹⁷⁷ Lи 1	6.4E8	6.4E6	20	8.3E8	1.7E8	Chemical purification
ger therapy	¹⁶⁶ Yb 56.7h	¹⁶⁶ Yb	Ta-Re	1.4E10	5.4E10	¹⁶⁶ Yb 5	4.1E10	2.1E9	20	5.4E10	1.1E10	Chemical purification
β therapy	¹⁶⁶ Ho 25.8h	¹⁶⁶ Ho	Ta-Re	1.4E7	1.2E7	¹⁶⁶ Но 5	9.6E6	4.8E5	20	2.9E7	6.0E6	Chemical purification
uger therapy	¹⁶¹ Tb 6.9d	¹⁶¹ Tb	UCx-Re	2.1E7	2.7E7	¹⁶¹ Tb 5	1.9E7	9.5E5	20	2.7E7	5.4E6	Chemical purification
3- therapy	¹⁵⁶ Tb 5.35d	¹⁵⁶ Tb	Ta-Re	2.5E8	8.9E7	¹⁵⁶ Тb 1	5.5E7	5.5E5	20	6.3E7	1.3E7	Chemical purification
SPECT	¹⁵⁵ Tb 5.33d	¹⁵⁵ Dy/ Tb	Ta-Re	3.2E9/ 7.4E8	7.9E9	¹⁵⁵ Dy 1	5.3E9	5.3E7	20	3.4E9	6.8E8	RILIS Dy
3 therapy	¹⁵³ Sm 46.8h	¹⁵³ Sm	UCX-Re	1.5E8	2.2E9	¹⁵³ Sm 5	2.8E9	1.4E8	20	5.2E9	1.0E9	Chemical purification
PET/CT	¹⁵² Tb 17.5h	¹⁵² Dy/ Tb	Ta-Re	1.3E10/ 3.3E9	5.6E10	¹⁵² Dy 1	3.7E10	3.7E8	20	1.1E11	2.2E10	RILIS Dy
τ therapy	¹⁴⁹ Tb 4.1h	¹⁴⁹ Tb	Ta-Re	1.1E10	6.0E10	¹⁴⁹ Tb 1	3.8E10	3.8E8	20	1.2E11	2.4E10	Chemical purification
9 CERN	ENCINEERING DEPARTMENT	12910	19		T.	Stora E	N-STI - CEI	RN-MEDI	CIS – Os	slo Jan :	2017	,

⁴⁰ Pr-PET/ ger therapy	¹⁴⁰ Nd 3.4d	¹⁴⁰ Nd	Ta-Re	1.8E9	2.0E10	¹⁴⁰ Nd 5	1.2E10	6.0E8	20	2.0E10	4.0E9	Chemical purification
- therapy	⁸⁹ Sr 50.5d	⁸⁹ Sr	UCx-Re	1.2E10	2.3E9	⁸⁹ Sr 5	2.0E9	1.0E8	20	2.7E9	5.4E8	Only mass searation
PET	⁸² Sr 25.5d	⁸² Sr	UCx-Re	3.6E10	4.6E9	⁸² Sr 5	1.7E9	8.5E7	20	2.0E9	4.0E8	Only mass separation
- therapy	⁷⁷ As 38.8h	⁷⁷ As	UCX- VD5	5.7E9	1.1E10	⁷⁷ As 5	5.8E9	2.9E8	20	9.4E9	1.4E9	Chemical purification
PET	⁷⁴ As 17.8d	⁷⁴ As	Y ₂ O ₃ -VD5	6.5E9	1.2E9	⁷⁴ As 5	3.8E8	1.9E7	20	4.5E8	9.0E7	Chemical purif
PET	⁷² As 26.0d	⁷² As	Y ₂ O ₃ -VD5	1.6E10	2.8E10	⁷² As 5	9.1E9	4.6E8	20	1.5E10	3.0E9	Chemical purification
PET	⁷¹ As 65.3h	⁷¹ As	Y ₂ O ₃ -VD5	1.8E10	1.8E10	⁷¹ As 5	5.9E9	3.0E8	20	8.0E9	1.6E9	Chemical purification
3 therapy	⁶⁷ Cu 61.9h	⁶⁷ Cu	UCX-Re	2.7E9	3.4E9	⁶⁷ Cu 7	1.5E9	1.1E8	20	2.7E9	5.4E8	Chemical purification
PET	⁶⁴ Cu 12.7h	⁶⁴ Cu	Y ₂ O ₃ -VD5	1.1E10	2.3E10	⁶⁴ Cu 5	7.1E9	3.6E8	20	2.1E10	3.6E9	Chemical purification
, dosimetry	⁶¹ Cu 3.3h	⁶¹ Cu	Y ₂ O ₃ -VD5	7.7E9	1.7E10	⁶¹ Cu 5	5.1E9	2.6E8	20	2.1E10	4.0E9	Only mass separation
3 therapy	⁴⁷ Sc 3.4d	⁴⁷ Sc	Ti	6.4E10	5.0E10	⁴⁷ Sc 5	4.2E10	2.1E9	20	5.9E10	1.2E10	Evaporation
PET	⁴⁴ Sc 4.0h	⁴⁴ Sc	Ti	4.4E10	6.6E10	⁴⁴ Sc 6.4	5.7E10	2.9E9	20	1.6E11	3.2E10	Evaporation
PET	¹¹ C 20.3m	¹¹ CO	NaF-LiF- VD5 [◊]	-	-	- 15	-	1.4E9	-	-	4.2E9	Only mass separation

CERN-MEDICIS partners : 1st Board in February

- Dr. Forni (Clin. Carouge, Geneve)
- Prof. Morel, Prof. Buehler, Prof. Ratib, Prof Walter (HCUGE, Geneve)
- Prof. R. Jolivet (CERN/UNIGE, Geneve)
- Prof. D. Hanahan (ISREC), Prof A. Pautz (EPFL, Lausanne)
- Prof. J. Prior (CHUV, Lausanne)
- Prof M. Huyse, prof. P. van Duppen, prof. T. Cocolios (KUL, Univ. Leuven)
- Prof. S. Lahiri (SINP, Kolkata)
- Prof. A. Goncalves, Prof. A. Raucho (C2TN, IST, Lisbon)
- Prof. F. Haddad (ARRONAX, Nantes)
- F. Bruchertseifer, A. Morgenstern (JRC-ITU, Karlsruhe)
- P. Regan, P. Ivanov, A. Robinson (National Physical Laboratory, Surrey)
- N. Vd Meulen, C. Mueller, Prof. R. Schibli (Paul Scherrer Institut, Villingen)
- Dr. U. Koester (ILL, Grenoble)
- Prof. K. Wendt (JGUniversity, Mainz)
- Dr. Owen, EANM

A marie-curie training network

Passicis ENCINEERING DEPARTMENT

The EU Framework Programme for Research and Innovation **HORIZON 2020**

Promed

Chur

rgamo

Brescia

Varese

0

Milano

Pavia

innovation

A first example Added functionality : Molecular engineering (inorganic chemistry)

Folate bioconjugate with fluorescence and radioligand chelator Prof Goun, EPFL

Link to experimental (neuro)-surgery

D. Cordier • F. Forrer • F. Bruchertseifer • A. Morgenstern • C. Apostolidis • S. Good • J. Müller-Brand • H. Mäcke • J. C. Reubi • A. Merlo

Eur J Nucl Med Mol Imaging (2010) 37:1335–1344 DOI 10.1007/s00259-010-1385-5

The complete cycle of MEDICIS

ENCINEERING

) **f C**í

Take-home message

Hesicis

New isotopes can be delivered to Partner biomedical institutes

where they synthesize new drugs

and test them for precision imaging or treatment

GENEVOIS LE SAVOR DES PHYSICIEIS AU SERVICE DE LA MÉDECINE DE DOMAN La lutte anti-cancer se prépare au Cern

1st isotopes produced in ISOLDE HRS beam dump and separated in the lab during commissioning Dec 2017

Analyzing magnet

^{149/152/155/161}Terbium ions collected in metal foils

Large Collaboration with regional and European Institutes

And now let's have a virtual tour !!

IRINGVALL- MOBERGAnnieSWECERNEUAcademic01.05.201629.03.20197Ounversity of Gothenburg June 20182VUONGNhāt-TānCHCERNEUAcademic01.01.201601.01.201912EPFL May 20163PITTERSJohannaATCERNEUAcademic01.10.201501.10.201815TU Vienna October 20163PITTERSJohannaATCERNEUAcademic01.10.201501.10.201815TU Vienna October 20164NAZAROVAMarinaRUUNIMANUKAcademic12.11.201512.11.201813.5UNIMAN November 20155GADELSHINVadimRUJGU MainzDEAcademic15.01.201615.01.201911.5JGU Mainz August 20166FORMENTORobertoITAAAFRNon- academic08.02.201608.02.201911Uni. Nantes May 20167CHOWDHURYSanjibINC2TNPTAcademic01.01.201601.01.201912IST January 20168D'ONOFRIOAliceFRC2TNPTAcademic02.11.201502.11.201814IST February 2016		1		_					0501	014/5				
2VUONGNhàt-TânCHCERNEUAcademic01.01.201601.01.201912EPFL May 20163PITTERSJohannaATCERNEUAcademic01.10.201501.10.201815TU Vienna October 20164NAZAROVAMarinaRUUNIMANUKAcademic12.11.201512.11.201813.5UNIMAN November 20155GADELSHINVadimRUJGU MainzDEAcademic15.01.201615.01.201911.5JGU Mainz August 20166FORMENTORobertoITAAAFRNon- academic08.02.201608.02.201911Uni. Nantes May 20167CHOWDHURYSanjibINC2TNPTAcademic01.01.201502.11.201814IST February 2016			University of Gothenburg June 2016	/	29.03.2019	01.06.2016	Academic	EU	CERN	SWE	Annie	RINGVALL- MOBERG	1	
3PITTERSJohannaATCERNEUAcademic01.10.201501.10.201815TU Vienna October 20164NAZAROVAMarinaRUUNIMANUKAcademic12.11.201512.11.201813.5UNIMAN November 20155GADELSHINVadimRUJGU MainzDEAcademic15.01.201615.01.201911.5JGU Mainz August 20166FORMENTORobertoITAAAFRNon- academic08.02.201608.02.201911Uni. Nantes May 20167CHOWDHURYSanjibINC2TNPTAcademic01.01.201502.11.201814IST February 20168D'ONOFRIOAliceFRC2TNPTAcademic02.11.201502.11.201814IST February 2016			EPFL May 2016	12	01.01.2019	01.01.2016	Academic	EU	CERN	СН	Nhât-Tân	VUONG	2	
4NAZAROVAMarinaRUUNIMANUKAcademic12.11.201512.11.201813.5UNIMAN November 20155GADELSHINVadimRUJGU MainzDEAcademic15.01.201615.01.201911.5JGU Mainz August 20166FORMENTORobertoITAAAFRNon- academic08.02.201608.02.201911Uni. Nantes 			TU Vienna October 2016	15	01.10.2018	01.10.2015	Academic	EU	CERN	AT	Johanna	PITTERS	3	
5 GADELSHIN Vadim RU JGU Mainz DE Academic 15.01.2016 15.01.2019 11.5 JGU Mainz August 2016 6 FORMENTO Roberto IT AAA FR Non- academic 08.02.2016 08.02.2019 11 Uni. Nantes May 2016 7 CHOWDHURY Sanjib IN C2TN PT Academic 01.01.2016 01.01.2019 12 IST January 2016 8 D'ONOFRIO Alice FR C2TN PT Academic 02.11.2015 02.11.2018 14 IST February 2016			UNIMAN November 2015	13.5	12.11.2018	12.11.2015	Academic	UK	UNIMAN	RU	Marina	NAZAROVA	4	2
6 FORMENTO Roberto IT AAA FR Non- academic 08.02.2016 08.02.2019 11 Uni. Nantes May 2016 7 CHOWDHURY Sanjib IN C2TN PT Academic 01.01.2016 01.01.2019 12 IST January 2016 8 D'ONOFRIO Alice FR C2TN PT Academic 02.11.2015 02.11.2018 14 IST February 2016		5	JGU Mainz August 2016	11.5	15.01.2019	15.01.2016	Academic	DE	JGU Mainz	RU	Vadim	GADELSHIN	5	
7 CHOWDHURY Sanjib IN C2TN PT Academic 01.01.2016 01.01.2019 12 IST January 2016 8 D'ONOFRIO Alice FR C2TN PT Academic 02.11.2015 02.11.2018 14 IST February 2016			Uni. Nantes May 2016	11	08.02.2019	08.02.2016	Non- academic	FR	AAA	IT	Roberto	FORMENTO	6	
B D'ONOFRIO Alice FR C2TN PT Academic 02.11.2015 02.11.2018 14 IST February 2016			IST January 2016	12	01.01.2019	01.01.2016	Academic	PT	C2TN	IN	Sanjib	CHOWDHURY	7	
	1		IST February 2016	14	02.11.2018	02.11.2015	Academic	PT	C2TN	FR	Alice	D'ONOFRIO	8	
9 CHOI KyungDon KR CNAO IT Academic 12.11.2015 12.11.2018 13.5 Uni. Pavia October 2016		1	Uni. Pavia October 2016	13.5	12.11.2018	12.11.2015	Academic	IT	CNAO	KR	KyungDon	CHOI	9	
10 MAIETTA Maddalena IT LEMER PAX FR pAX Non- academic 20.10.2015 20.10.2018 14.5 Uni. Nantes January 2016			Uni. Nantes January 2016	14.5	20.10.2018	20.10.2015	Non- academic	FR	LEMER PAX	IT	Maddalena	MAIETTA	10	8
11 STEGEMANN Simon DE KULeuven BE Academic 01.06.2016 29.03.2019 7 KULeuven June 2016		H	KULeuven June 2016	7	29.03.2019	01.06.2016	Academic	BE	KULeuven	DE	Simon	STEGEMANN	11	, Suga
12* LITVINENKO Alexandra RU UNIGE/HU CH Academic 01.12.2016 29.03.2019* 1 UNIGE 2017			UNIGE 2017	1	29.03.2019*	01.12.2016	Academic	СН	UNIGE/HU G	RU	Alexandra	LITVINENKO	12*	
13* CICONE Francesco IT CHUV CH Academic 15.10.2015 15.10.2018* 14.5 UNIL November 2015	2	C	UNIL November 2015	14.5	15.10.2018*	15.10.2015	Academic	СН	CHUV	IT	Francesco	CICONE	13*	ez "
14* PRIONISTI Ioanna GR UNIGE/HU CH Academic 01.01.2017 29.03.2019* 0 UNIGE 2017	44		UNIGE 2017	0	29.03.2019*	01.01.2017	Academic	СН	UNIGE/HU G	GR	loanna	PRIONISTI	14*	
15* FAM Thhe Kyong UA EPFL CH Academic 01.08.2015 01.08.2018* 17 EPFL August 2015 August 2015 August 2015 August 2015 August 2015			EPFL August 2015	17	01.08.2018*	01.08.2015	Academic	СН	EPFL	UA	Thhe Kyong	FAM	15*	

The Target : Tumor Endotelial Marker-1 (TEM1)

Overexpressed by:

Tumor Vessels

Tumor cells

Host microenvironment (fibroblasts, pericytes)

Morab 0004 (Clinical phase 2) scFv78-Fc (78Fc)

Cicone F et al. full IgG anti-TEM1

Labelling of 78Fc anti-TEM1 with radiometals

First PET imaging of ¹⁵²Tb-CHX-A"-DTPA-ScFv78Fc

Ewing Sarcoma cell line A673

Cicone F et al. IRIST Conference, Lausanne 2016

T. Stora EN-STI - CERN-MEDICIS – Osl Faculté de bio

Faculté de biologie et de médecine

Intracavity injection +resection of Glioblastoma

Targeted alpha-radionuclide therapy of functionally critically located gliomas with ²¹³Bi-DOTA-[Thi⁸,Met(O₂)¹¹]-substance P: a pilot trial

D. Cordier • F. Forrer • F. Bruchertseifer • A. Morgenstern • C. Apostolidis • S. Good • J. Müller-Brand • H. Mäcke • J. C. Reubi • Eur J Nucl Med Mol Imaging (2010) 37:1335–1344 DOI 10.1007/s00259-010-1385-5

ORIGINAL ARTICLE

Age at Dx (years)	Diagnosis/location of tumour	Cycles/activity (GBq)	Tumour volume (cm ³)	Barthel Index pre-/post- therapeutic	PFS (months)	OS (months)
60	GBM frontal L callosal	1/1.07	41.6	75/ 90	2	16
40	GBM frontal L (SMA precentral)	1/1.92	76.0	80/ 90	11	19
55	Astro WHO grade III fronto-opercular L	4/7.36	74.3	100/100	24+	24+
33	Astro WHO grade II frontal R (SMA)	1/1.96	12.0	100/100	23+	23+
39	Astro WHO grade II occipital R	1/2.00	17.1	100/100	17+	17+
	Age at Dx (years) 60 40 55 33 39	Age at Dx (years)Diagnosis/location of tumour60GBM frontal L callosal40GBM frontal L callosal40GBM frontal L (SMA precentral)55Astro WHO grade III fronto-opercular L33Astro WHO grade II frontal R (SMA)39Astro WHO grade II occipital R	Age at Dx (years)Diagnosis/location of tumourCycles/activity (GBq)60GBM frontal L callosal1/1.0740GBM frontal L (SMA1/1.92 precentral)55Astro WHO grade III4/7.36 fronto-opercular L33Astro WHO grade II frontal1/1.96 R (SMA)39Astro WHO grade II1/2.00 occipital R	Age at Dx (years)Diagnosis/location of tumourCycles/activity (GBq)Tumour volume (cm³)60GBM frontal L callosal1/1.0741.640GBM frontal L (SMA1/1.9276.0precentral)75Astro WHO grade III4/7.3674.355Astro WHO grade III4/7.3674.333Astro WHO grade II frontal1/1.9612.0881/1.9612.09Astro WHO grade II1/2.0017.1	Age at Dx (years)Diagnosis/location of tumourCycles/activity (GBq)Tumour volume (cm3)Barthel Index pre-/post- therapeutic60GBM frontal L callosal1/1.0741.675/ 9040GBM frontal L (SMA)1/1.9276.080/ 9055Astro WHO grade III4/7.3674.3100/10053Astro WHO grade II frontal1/1.9612.0100/10033Astro WHO grade II1/2.0017.1100/100	Age at Dx (years)Diagnosis/location of tumourCycles/activity (GBq)Tumour volume (cm³)Barthel Index pre-/post- therapeuticPFS (months)60GBM frontal L callosal1/1.0741.675/ 90240GBM frontal L (SMA1/1.9276.080/ 9011precentral)1111111155Astro WHO grade III4/7.3674.3100/10024+33Astro WHO grade II frontal1/1.9612.0100/10023+89Astro WHO grade II1/2.0017.1100/10017+

PFS progression-free survival, *OS* overall survival, + ongoing, *SMA* supplemental motor area, *L* left, *R* right, *Astro* astrocytoma, *GBM* glioblastoma multiforme, *Dx* diagnosis

- Neurokinin subtype I receptor (NK1R) is overexpressed in glioma cells and tumor vessels
- 11mer Substance P (SP) is member of the tachykin peptide neurotransmitters family
- SP:Arg-Pro-Lys-Pro-Gln-Gln-Phe-Phe-Gly-Leu-Met
- 213Bi-DOTAGA-Arg1-SP 213Bi-DOTA-[Thi8,Met(O2)11]-SP
- Neoadjuvant and adjuvant intracavity treatment before resection.
- Comparaison with external radiotherapy
- Therapeutic nuclear medicine (medical radiology series, R. P. Baum Ed, Springer, 2014)

Translational approach

Prof D. Hanahan, Swiss Inst. For Exper. Cancer Research Lauréat du prix 2014 « Contribution pour l'impact global tout au Long d'une carrière » assoc. Americaine Rech. Cancer

Hallmarks of Cancer: The Next Generation

Douglas Hanahan^{1,2,*} and Robert A. Weinberg^{3,*}

¹The Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, EPFL, Lausanne CH-1015, Switzerland ²The Department of Biochemistry & Biophysics, UCSF, San Francisco, CA 94158, USA ³Whitehead Institute for Biomedical Research, Ludwig/MIT Center for Molecular Oncology, and MIT Department of Biology, Cambridge,

MA 02142, USA

*Correspondence: dh@epfl.ch (D.H.), weinberg@wi.mit.edu (R.A.W.)

