

Overview of the ATLAS Higgs boson results

Valerio Dao on behalf of the ATLAS collaboration CERN

excited QCD - Schladming

30-01-2019

The Higgs boson

- With the discovery of a SMlike Higgs boson in 2012, the SM is now complete
- The Higgs boson provides tree level interactions with fermions and vector bosons which are also linked to the generation of their masses

- LHC Run1 left a strong legacy of Higgs boson measurements:
 - mass (125 GeV) known to 0.2%
 - spin 0 and CP parity
 - coupling to vector bosons and taus established
 - measurements driven by leading production modes

So far, no sign of deviation with respect to the Standard Model Higgs boson

- Higgs boson physics represents the newer and fresher playground at LHC Run2 to understand the consistency of the SM and explore new physics effects
- indirect searches:
 - precise measurement of production and decays
 - (pseudo) differential production measurement
 - EFT coupling interpretation
 - rare Higgs boson decays
 - measurement of decay kinematics

- direct searches:
 - extended Higgs sector both at high and low masses (new scalars, pseudo scalars)
 - charged Higgs
 - + exotics decays
 - new states producing Higgs boson in decays (SUSY, heavy resonance)
 - resonant di-Higgs production

An incredibly large amount of material ... concentrating on some key aspects (personal choice)

Dao Valerio

- Extremely rich phenomenology both in production and decay: a lot of handles to test the consistency of the model and probe for new physics effects
- Iarge variety of physics objects involved: need an excellent multipurpose detector
- good complementarity: cleanest final state have lower cross section or Br. Channels with higher cross section usually more challenging experimentally due to background

Dao

The golden channels

Η->γγ

<i>ATLAS</i> →	⊣Total □ Stat. only
Run 1: √s = 7-8 TeV, 25 fb ⁻¹ , Run 2: √s = 13 TeV, 36.1 fb ⁻¹	Total (Stat. only)
Run 1 $H \rightarrow 4l$	124.51 ± 0.52 (± 0.52) GeV
Run 1 $H \rightarrow \gamma \gamma$	126.02 ± 0.51 (± 0.43) GeV
Run 2 $H \rightarrow 4l$	124.79 ± 0.37 (± 0.36) GeV
Run 2 $H \rightarrow \gamma \gamma$	124.93 ± 0.40 (± 0.21) GeV
Run 1+2 <i>H</i> →4 <i>l</i>	124.71 ± 0.30 (± 0.30) GeV
Run 1+2 $H \rightarrow \gamma \gamma$	125.32 ± 0.35 (± 0.19) GeV
Run 1 Combined	125.38 ± 0.41 (± 0.37) GeV
Run 2 Combined	124.86 ± 0.27 (± 0.18) GeV
Run 1+2 Combined	124.97 ± 0.24 (± 0.16) GeV
ATLAS + CMS Run 1	125.09 ± 0.24 (± 0.21) GeV
123 124 125 126	127 128
	m _H [GeV

H->ZZ*->41

- <0.2% uncertainty on Higgs boson mass</p>
- partial Run2 result competitive with final Run1 LHC combination

Phys. Lett. B 784 (2018) 345

ATLAS-CONF-2018-018

CÊRN

Тор

0.5

The golden channels

+ 0.43 - 0.37

1.12

2

1.5

+ 0.37

- 0.33

2.5

 $(\sigma \times B)^{-}/(\sigma \times B)_{SM}$

+ 0.22

- 0.16

3

H->ZZ*->41

- select events with 114 GeV<m_{4L}<130 GeV
- different categories targeting production modes

signal extracted with multivariate discriminant

6

e+µ + MET events only:

most sensitive final state due to reduced Z background

- ◆ 2j events sensitive to VBF production (fit to BDT)
- O-1j events used to measure ggF production: fit to m_T in multiple categories

 $\sigma_{ggF} \cdot \mathcal{B}_{H \to WW^*} = 11.4^{+1.2}_{-1.1} (\text{stat.})^{+1.2}_{-1.1} (\text{theo syst.})^{+1.4}_{-1.3} (\text{exp syst.})$

 $\sigma_{\text{VBF}} \cdot \mathcal{B}_{H \to WW^*} = 0.50^{+0.24}_{-0.22} (\text{stat.}) \pm 0.10 (\text{theo syst.})^{+0.12}_{-0.13} (\text{exp syst.}) \text{ pb}$

Dao Valerio

- Exploiting all the di-tau decay modes:
 - had-had, lep-had, lep-lep
- 2 main categories, each split into tight and loose part:
 - ♦ VBF: >=2j , m_{jj}>400GeV
 - boosted ggF: !VBF , >=1j and p_T^{tt}>100 GeV
- sensitivity strongly increases with p_T^H: most favourable region above 140 GeV

Run2 signal significance: 4.4 s.d. obs. , 4.1 s.d. exp. Run1+Run2 signal significance: 6.4 s.d. obs. , 5.4 s.d. exp.

!!! OBSERVATION of H->ττ !!!

Dao Valerio

H->bb: VH as key channel

WH -> lvbb

- Exploiting leptonic vector boson decay:
 - background reduction easier to collect events
- Three main channels used on the number of reconstructed leptons (0L, 1L, 2L):
 - main sensitivity from V p_T>150 GeV
 - + using multivariate techniques for signal extraction
 - cross check with fit to mbb distribution

H->bb: VH as key channel

WH -> lvbb

- background reduction easier to collect events
- Three main channels used on the number of reconstructed leptons (0L, 1L, 2L):
 - main sensitivity from V p_T>150 GeV
 - using multivariate techniques for signal extraction
 - cross check with fit to mbb distribution

H->bb: "all hadronic"

VBF

2 b-jets + 2jets (+photon):

the photon reduces bkgd and ease triggering

ggH

Higgs candidate reconstructed as large R jet (p_T>480 GeV):

relying critically on double b-tagging inside jet

 $\mu_H = 5.8 \pm 3.1 \text{ (stat.)} \pm 1.9 \text{ (syst.)} \pm 1.7 \text{ (th.)}$

observed significance: ~1.6 s.d.

Run1+Run2 significance: 5.4 s.d. obs. , 5.5 s.d. exp.

!!! OBSERVATION of H->bb !!!

Run2 significance: 5.3 s.d. obs. , 4.8 s.d. exp.

!!! OBSERVATION of VH production !!!

more on third generation: ttH

Phys. Rev. D 97 (2018) 072003

Dao Valerio

more on third generation: ttH

Phys. Rev. D 97 (2018) 072003

ATLAS-CONF-2018-026

 Fitting di-muon mass in several analysis regions with different detector resolution and production modes

> observed $\sigma^*BR/(\sigma^*BR)_{SM} < 2.1$ expected $\sigma^*BR/(\sigma^*BR)_{SM} < 2.0$

Phys. Rev. Lett. 120 (2018) 211802

Exploiting ZH->IIcc production (similar to VHbb analysis)

Fitting di c-jets invariant mass in 2 Z pT categories

observed σ_{ZH} *BR_{cc} < 2.7 pb expected σ_{ZH} *BR_{cc} < 3.9 pb

Dao Valerio

Phys. Lett. B 786 (2018) 134

going even more rare

H->meson+ γ

- indirect sensitivity to c and b Yukawa couplings
- meson identified through excellent performance of muon reconstruction

 ◆ 6 categories targeting different production mode (VBF more sensitive), photon p_T and lepton flavour

> **observed σ*BR/(σ*BR)_{SM} < 6.6** expected σ*BR/(σ*BR)_{SM} < 5.2

5.7 I QCD - 30/01/2019

- Good complementarity and consistence among the various analyses
- Leading production and decay mode established at more than 5 sigma: no major deviation from SM.

 reaching very high precision in determination of coupling to SM particles

(*) not including the latest Hbb results

Good complementarity and consistence among the various analyses

Leading production and decay mode established at more than 5 sigma: no major deviation from SM.

 reaching very high precision in determination of coupling to SM particles

(*) not including the latest Hbb results

Dao Valerio

- Large amount of information allow to probe more general scenarios/assumptions:
 - independent coupling modifiers for ggH and H_{γγ} loops (sensitive to BSM particles)
 - allowing Higgs boson to decay to non SM particles
- Clear assumptions: only modification of the strength of the coupling is considered and not a change in their structure

 results could be used to set limits on new physics models that predicts modifications of the couplings

 example on hMSSM: results complementary to direct searches

Dao Valerio

beyond coupling modifiers

- New physics effect can go beyond simple coupling modifications.
- Effective Field Theory approach for indirect BDSM effects

- to SM cG = 0.00003ATLAS Preliminary cHW = 0.04 10 respect cA = 0.0003• • • • cHB = 0.15 √s= 13 TeV, 36.1 fb⁻ cu = 0.25- - cWW - cB = 0.06 latio with $qq \rightarrow Hqq$ $qq \rightarrow Hqq$ $qq \rightarrow Hqq$ $qq \rightarrow Hqq$ HΙν HΙν HII HII ttH B(H→ 4ľ low p^z high p_T^Z low p₊^W high p_T^W VH-like rest p^j₊>200 GeV p_3<25 GeV p_3≥ 25 GeV
 - Effects of EFT operators can alter the kinematics of the Higgs production (and decay)
 - In general, larger deviations at higher p_T
 - Important to measure the process more differentially:
 - fully differential distributions only possible the the "golden channels"
 - Simplified Template Cross Section (STXS): bin the production modes in key kinematic quantities
 - also helps reducing theory uncertainties

- Direct search for Higgs decaying into "non detectable particles" (dark matter candidates)
- ◆ need to rely on associated Higgs production (predictions): missing E_T + X final state

Key requirement: missing E_T > 90-120 GeV

H->invisible

ATLAS-CONF-2018-054/

Dao Valerio

- Exploiting excellent lepton performance to look for new resonance in Higgs decay: dark sector model interpretation
- Single resonance (ZZ_d): closely following SM H->ZZ* analysis
- Double resonance (Z_dZ_d): pair OS SF leptons minimising the difference between reconstructed masses of the two candidates

 Very low mass region (muons only) also interpret in the context of H->aa searches

Dao Valerio

- Search for decay into pair of spin 0 particles subsequently decaying into SM particles: key experimental challenge is handling of low p_T objects
- Assuming SM production; model independent limits in each decay
- Comparison of analyses in 2HDM+a model:
 - Br of a strongly depends no the model parameters
 - good complementarity of final states in the full parameter phase space

bbbb: VH production

- This was a partial (and biased) overview of the landscape of Higgs boson analyses at ATLAS
- First part of LHC Run2 dataset already brought some important milestones.
 - observation of H->bb decay
 - observation of ttH production
- No significant deviation from SM prediction has been found but ATLAS continues to improve the precision of the measurements and to provide unexplored opportunities for searches that could be used to constrain new physics predictions

 much more data already on tape to be analysed (and event more to come, see Pedrag's talk)

!!!! Stay tuned for upcoming results !!!!

Dao Valerio

"would you like to know more?"

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/HiggsPublicResults

BackUp

- Run1 legacy results: being confirmed by Run2 measuremen
 - 2012 discovery and precise measurement driven by gluon fusion production mode [indirect probe of coupling to quarks]
 - 5.4 s.d. observation of vector boson fusion production
 - 3.5 s.d. evidence for VH production
 - observation of *direct decay into bosonic final states* (WW,ZZ,γγ) well established
 - observation of *decay into tau pair* confirmed coupling to fermions (leptons)
 - mass measurement now at <3% uncertainty</p>
 - 🔸 spin / parity
 - "re-discovery" of Higgs boson signal at 13TeV started with bosonic channels (ZZ and γγ)

Dao Valerio

00

hhnomenology

- production and decay with statement on complete sophisticated analyses gluon fusion:
 - overwhelming multi-jet background
 - only limited to very high p_T
- Vector Boson Fusion: 1/10 of total cross section
 - forward jets topology helps reducing the background
 - fully hadronic final state still maintain many experimental difficulties (trigger)
- ◆ VH production: 1/20 of total cross section
 - can use leptonic decays of V for triggering/background reduction
 - GOLDEN H->bb channel at hadronic machines
- ttH: 1/100 of total cross section
 - can rely on leptonic decays of top quarks for triggering/ background reduction
 - complicated combinatorics: difficult to extract a mass peak already for the signal

Л

ATLAS-CONF-2018-018

CERN

The golden channels: ZZ

Dao Valerio

The golden channels: yy

ATLAS-CONF-2018-028

Dao Valerio

Backup on inclusive xSection, differential combination; <u>HIGG-2017-11/</u>

32

H->bb: VH

Warning: slightly simplified version, only 1 jet multiplicity bin shown

Dao Valerio

Phys. Rev. D 98 (2018) 052003

CERN

H->bb: VH

Dao Valerio

CERN

H->bb: VH

- 2 b-jets + 2jets (+photon):
- the photon reduces bkgd and ease triggering

H->bb: VBF

W/Z

W/

H

Coupling parameterisation (2)

- 2HDM: extension of the SM to 5 Higgs bosons (2 CP-even, 1 CP-odd, 2 charged)
- ♦ h = lightest CP-even. Can parameterise deviation of couplings as a function of 2 mixing parameters

	2HDM				
	type I	type II	Type III	Type IV	
κ_V	$\sin(\beta - \alpha)$	$\sin(\beta - \alpha)$	$\sin(\beta - \alpha)$	$\sin(\beta - \alpha)$	
ĸu	$\cos(\alpha) / \sin(\beta)$	$\cos(\alpha) / \sin(\beta)$	$\cos(\alpha) / \sin(\beta)$	$\cos(\alpha) / \sin(\beta)$	
κ _d	$\cos(\alpha) / \sin(\beta)$	$-\sin(\alpha)/\cos(\beta)$	$\cos(\alpha) / \sin(\beta)$	$-\sin(\alpha)/\cos(\beta)$	
κ_ℓ	$\cos(\alpha) / \sin(\beta)$	$-\sin(\alpha)/\cos(\beta)$	$-\sin(\alpha)/\cos(\beta)$	$\cos(\alpha) / \sin(\beta)$	

 Express production and decay of Higgs boson in terms of simple modifiers of couplings with known SM particles: assuming that effect of new physics modifies the rate but not the type of interaction

 Introducing new parameter for Higgs-to-invisible branching ratio:

 $Br(H->xx) = \kappa^{2}_{xx} / \kappa^{2}_{H} * (1-Br_{inv})$

- Simultaneous fit to all Higgs boson production and decay measurements can help setting upper limit Br_{inv}:
 - Brinv<49% @ 95% CL level</p>
 - *improving by 10%* the limit from direct H->invisible searches and making it less model dependent

"Sensitivity might not require extreme Precision"

M. Mangano's talk

size of
$$\delta O_Q \sim \left({Q \over \Lambda}
ight)^2$$
 analysis deviation NP scale

- Probing higher scale in the analysis makes you mode sensitive to NP therefore you can afford to be less precise
- One example:
 - → 3% uncertainty for p_T>150GeV : probes scales up to 890 GeV
 - + 10% uncertainty for p_T>600GeV : probes scales up to 1800 TeV
 - an analysis 3 times less precise has twice the sensitivity
- High pT VH analysis could become competitive with inclusive H->WW measurement
- As Higgs p_T increases, VH becomes more and more competitive with ggF as dominate Higgs production mode

+ Direct searches:

- + new physics signature include SM Higgs boson or SM Higgs-boson-like particles in final states:
- consider simplified models as a prototype for a large variety of models: heavy vector triplets, vector-like quarks, Higgs+invisible, SUSY EWK decay chains, di-Higgs resonances

Indirect searches:

- modified interaction of Higgs boson can be revealed through deviations of production/decays with respect to SM
- often interpreted in the context of effective field theory (EFT)

$$\mathcal{L} = \mathcal{L}_{\rm SM} + \sum_i c_i^{(6)} O_i^{(6)} / \Lambda^2$$

- VH production very sensitive to anomalous Higgs-Vector boson interactions
- Sensitivity VS "Precision" balance:
 - effects are small on quantities we can measure very precisely
 - effects are much larger in tails where the precision of the measurements in less high

Operator	Expression	HEL coefficient	Vertices
O _g	$ H ^2 G^A_{\mu u} G^{A\mu u}$	$cG = \frac{m_W^2}{g_s^2} \bar{c}_g$	Hgg
O_{γ}	$ H ^2 B_{\mu u} B^{\mu u}$	$cA = \frac{m_W^2}{{g'}^2} \bar{c}_{\gamma}$	$H\gamma\gamma, HZZ$
Ou	$y_u H ^2 \bar{u}_l H u_R + \text{h.c.}$	$cu = v^2 \bar{c}_u$	Htī
O_{HW}	$i (D^{\mu}H)^{\dagger} \sigma^{a} (D^{\nu}H) W^{a}_{\mu\nu}$	$cHW = \frac{m_W^2}{g} \bar{c}_{HW}$	HWW, HZZ
O_{HB}	$i \left(D^{\mu} H \right)^{\dagger} \left(D^{\nu} H \right) B_{\mu \nu}$	$cHB = \frac{m_W^2}{g'} \bar{c}_{HB}$	HZZ
O_W	$i \left(H^{\dagger} \sigma^a D^{\mu} H \right) D^{\nu} W^a_{\mu u}$	$\mathbf{CWW} = \frac{m_W^2}{g} \bar{c}_W$	HWW, HZZ
O_B	$i\left(H^{\dagger}D^{\mu}H ight)\partial^{ u}B_{\mu u}$	$\mathbf{cB} = \frac{m_W^2}{g'} \bar{c}_B$	HZZ

7 / 59 dim 6 operators

Going more differential: EFT

Observed HEL constraints with $H \rightarrow ZZ^*$ and $H \rightarrow \gamma\gamma$

ATLAS Preliminary

STXS

Ultimate goal is the measurement of Higgs boson self coupling:

- SM process (*σ_{HH}=33fb*) way out of reach for current analyses also due to negative interference with "non resonant" production
- ✤ Run1 result: *о*нн<690 fb</p>

- SM Higgs boson as extra handle to assess presence of new physics
- sensitivity to anomalous triboson coupling: λ

Given the extremely

low cross section:

need to rely to at

statistic decay mode

least one high

Di-Higgs combination

Dao Valerio

