
What SFT

is providing
Librarian and Integrators WS

30 May 2018, CERN

Patricia Mendez Lorenzo

2

We all together provide

common software to

ensure the success of

the LHC experiments…

...the rest are technical

aspects

1. Let’s see how we contribute to the goal (next 30 min):
○ What we provide

○ How we do it (including the core elements)

○ Why we do it like this

○ Who and for whom

2. Let’s see how you contribute to this goal (rest of the day)

3. Let’s ensure we + you = WE
○ Discussion session at the end of the day

Outlook of the “rest”: the technical aspects

3

What do I expect from this talk:
-- That you perfectly understand and learn how we work: our procedures, our operations, our tools

-- That we establish single communication points through the LIM with those persons knowing the

system

Let’s start with the persons
● SPI manpower:

○ Patricia Mendez

○ Rafal Pacholek

○ Ilias Goulas

○ Genser team → Dima, Ivan, Gregory

● Contributors

○ Pere Mato (GL)

○ Gerardo Ganis (DGL)

Quite a lot of valuable work in collaboration with the CVMFS experts and the rest of members of SFT

● New members

○ Emil Obreshkov for ATLAS

○ Shahzad Malik Muzaffar for CMS

4

WHAT WE PROVIDE
● ~300 packages among:

○ Common SFT projects: ROOT, Geant4

○ ~270 external packages including python packages

■ Ecosystem for Machine Learning tools including Tensorflow

and Keras

○ 55 generators and 18 Grid (specific MW) packages

● Distribution of binaries to CVMFS

○ For 10x2 platforms for Python2 and Python3 → Releases

○ Extra platforms currently under testing → Nightlies

■ LHCb and ATLAS can/should test their SW on top these

builds for ROOT validation purposes

● Binaries packaging in tar files and rpms formats,

distributed to EOS

○ Recently in docker containers also

● Common tools in CVMFS

○ CMake, gcc,clang, etc

● Common infrastructure for the SFT projects

○ Jenkins server, build nodes 5SPI Project area

Communities area

Supported platforms
Platform = x86_64+({architecture})-${OS}-${COMPILER}-${BUILD_TYPE}

(Definition of the platform based on the HSF recommendations)

● (*) Previous gcc versions available for generators (on demand)

● (**) Infrastructure included in the system, not provided yet in releases nor nightlies 6

Compilers(*) Architectur

es (**)

Operating

systems

Build

type

gcc62

gcc7

gcc8

clang60

native (ubuntu)

avx2+fma slc6

Centos7

ubuntu16

ubuntu18

mac

Release

Debug

1. Build results reproducibility

○ Enabled via the implementation of HASHES for each package

2. Scalable approach in:

○ Package dependencies

○ Number of platforms

○ New/existing packages

○ Builds based on an incremental approach

3. “Prefix” independent distribution → reallocation

4. Limited manpower → automation

5. Quality assurance → software validation

○ Rafal’ presentation

6. Fast improvement/feedback cycle

Significant number of challenges common to many projects that can be commonly managed:

HSF Graeme’s presentation

Our challenges

7

The rest of the talk

will explain how we

cope with these

challenges

Keywords/ideas for each challenge
● For reproducibility

○ Sources stored in EOS independent of changes in code

○ Specific branches per release → modified for new generators only

○ Handling of the “internal” packages dependencies by us

● For escalation

○ Build software structure based on specific cmake modules handling dependencies

○ Modular approach for the implementation of new packages and versions

■ compiler, OS, architecture independent

● For reallocation

○ Packaging installation easily adaptable to any “prefix” and reallocation software executed after

each package expansion

● For automation

○ Jenkins structure and own scripting

● For continuous improvement

○ Operations based on a fast feedback implementation
8

Summary of our projects

9

SPI Repos all available in

GITLAB

LCGCMAKE LCGJENKINS LCGTEST LCGDOCS

CMake based implementation:

● Build recipes and

dependencies

● Views creation

Scripting:

● Jenkins

procedures

● RPMs

● AutomationLCG_91

LCG_92...

LCG_92a

LCG_92b

Distribution

validation:

Rafal’

presentation

Specific branches per release:

○ From master (major releases)

○ From existing releases (minor releases)

Documentation

Build procedures: core elements (I)

10

LCGCMAKE

Toolset.cmake # Application Area Projects

set(heptools_version dev3)

[...]

LCG_external_package(Jinja2 2.10)

LCG_external_package(jpype 0.6.2)

LCG_external_package(jupyter 1.0.0)

1) Sources download
2) Build orders per package

Machinery

GITLAB repo

EOS (**)

http:// (*)

● Branch (release/nightly)

● Platform

(*) http://lcgpackages.web.cern.ch/lcgpackages

(**) /eos/project/l/lcg/www/lcgpackages

C
D

A
S

H

p
u

b
lic

a
tio

n

Build procedures: core elements (II)

11

LCGCMAKE

Toolset.cmake

1) Sources download
2) Build orders per package

Machinery

GITLAB repo

EOS (**)

http:// (*)

Packages creation in tar

files

Dependencies text (.txt)

Separated build execution for

every platform

JENKINS

lc
g

in
fo

.c
e
rn

.c
h

Software distribution workflow

12

… … ...

.tgz .tgz .tgz .tgz

VM VM VM VM

1st Job

● Build of the binaries in

VM/dockers

● Creation of .tgz

● Copy to EOS

2nd Job

● Stratum0 are build nodes in Jenkins

● Download of .tgz from EOS

● Expansion and reallocation in CVMFS

○ Different mount point for releases/nightlies

○ Job granularity: Platform

LCGCMAKE

LCGJENKINS

JENKINS

Building from sources → LCGCMAKE Repo
● Build and testing infrastructure CMAKE based:

○ Build specifications included in platform-independent list files

○ Generation of CMakeFile driving the full build

○ Modular and scalable system

● SFT toolkit infrastructure based on cmake: LCGCMAKE

○ Based on “ExternalProject” CMake module implementation

■ Enable builds from external software sources

■ Easy way to control package dependencies

○ Repository available in GITLAB → Specific branch for every release

○ It includes:

■ Specific tests per package if needed

■ Individual packaging in tar files

■ Creation of views for both nightlies and releases

13

Default packaging

● lcgcmake packs the binaries in .tgz files

○ One summary .txt file including packages dependencies available per platform

● At the end of the build tar files are copied to from each individual build node to

EOS → LCGJENKINS repo

○ Incremental approach being the HASH (determined by the version-revision-

dependencies) a key parameter

○ Separated areas for releases and nightlies in EOS

○ Dependencies .txt file is also copied for installation purposes
14

Concatenation of all the .buildinfo files for a given LCG version
COMPILER: GNU 6.2.0, HOSTNAME: lcgapp-slc6-physical1.cern.ch, GITHASH: 'd35450d', HASH:

edbe7, DESTINATION: lcgenv, DIRECTORY: lcgenv, NAME: lcgenv, VERSION: 1.3.5, REVISION: ,

DEPENDS:

COMPILER: GNU 6.2.0, HOSTNAME: lcgapp-slc6-physical1.cern.ch, GITHASH: 'd35450d', HASH:

dc723, DESTINATION: absl_py, DIRECTORY: absl_py, NAME: absl_py, VERSION: 0.2.0, REVISION: 1,

DEPENDS: Python-2.7.13-b163d,setuptools-36.0.1-49883,

Binaries Packaging

Three packaging infrastructures supported

1. Nightlies/Releases: .tgz files created in default after the individual build of

any package

2. For Releases ONLY: RPMS created after the build in each individual VM

through the infrastructure created by LHCb

○ Code/repository managed by LCGJENKINS and adapted to our needs

○ RPMS repository migrated from AFS to EOS

3. For Releases only: Provision of docker containers in a flexible way

○ Total or partial number of packages per release

○ slc6/centos7 OS images downloaded from the official CERN repository

○ Created containers uploaded to EOS

15

Binaries Distribution

● Dependencies handling for tar files installation managed by a summary .txt file

○ Created for each build, i.e., per each platform and uploaded to EOS

● CVMFS default end-system

○ AFS no longer use/maintained unless required by experiments for generators ONLY → Jan’ talk in the

afternoon

○ We do provide the possibility to distribute to any other system → Interesting for the BE team

● Binaries installation method automatically handles the following main steps:

○ CVMFS transaction handling

○ Connection with EOS to download the tar files and the dependencies checking

○ reallocation procedures after installation

● Creation of views afterwards distributed to CVMFS

○ Compatible installation of software packages belonging to a LCG release under a single $PREFIX

○ A stable view always available under: /cvmfs/sft.cern.ch/lcg/nightlies/dev3(4)/latest →

Used by SWAN

■ Week day unaware: Link to the latest successful week day view
16

NIGHTLIES/RELEASES ARE JUST FLAVOURS OF THE SAME DISTRIBUTION PROCEDURES

Our CVMFS setups
● Two Stratum0 separated for releases and nighlies

○ Releases: /cvmfs/sft.cern.ch/lcg → cvmfs-sft.cern.ch

■ General tools such as gcc, clang, CMake, git also provided here

○ Nighlies: /cvmfs/sft-nightlies.cern.ch/lcg → cvmfs-sft-nightlies.cern.ch

■ Linked from the release area to have a single entry point

● New HW infrastructures recently provided by IT

○ New machine configuration based on local SSDs for publishing purposes

■ 30GB of RAM with temporal cvmfs transactions storage at the local SSDs

○ Spectacular publication time improvement; factor 6

■ Effort from our side is still needed due to the high volumes we handle:

17

26096 dirs 317822 files

3296 symlinks 17GB space

Release volumes per platform

Managing changes: workflow

18

2.. Experimental

(incremental and full)

3.. Incremental nightly builds

● Dev3: ROOT HEAD

● Dev4: current ROOT

patches version

4.. Releases LCG_XX and

LCG_XXpython3 (Full build)

Particular cases in the case of Releases
● Limited → Reduced number of packages selected by the user

● Latest → “Internally” triggered on demand to improve CVMFS speed performance.

○ WARNING-1 : SFT INTERNAL USE ONLY

○ WARNING-2: Do not confuse it with the “latest” views distribution already mentioned

CVMFS(1)

sft-

nightlies.cern.ch

(Docker containers)

(Docker containers)

VM (to be migrated)

CVMFS(2)

sft.cern.ch

1.. Local tests in build nodes

Aspect of the installations in CVMFS

19

LCG_externals_<platform>.txt pytools

LCG_generators_<platform>.txt MCGenerators

ROOT Grid

CORAL png

Qt5 R

[...] [...]

/cvmfs/sft.cern.ch/lcg/releases/LCG_93

/<version>/<platforms>/binaries

link to:

../../../png/<version-HASH>/<platform>/binaries

REAL AREA OF INSTALLATION

dev3

dev4

dev3

python3

[.....]

/cvmfs/sft.cern.ch/lcg/nightlies

Mon Tue Wed Thu Fri Sat Sun

Same tree structure as in releases also linking to the same real area

installation to ensure the incremental installation approach

devX

LCG_XX

[....]

/cvmfs/sft.cern.ch/lcg/views

Mon Tue Wed Thu Fri Sat Sun latest

/platform/<common_prefix>/binaries AND setup.(c)sh files

Automation procedures: Jenkins

20

Jenkins 2.46.3 version:
● Puppet Service handled by us for

all SFT projects

● VM/Centos7 with 32 CPUs and

1.8 TB of external disk (highest

I/O provided by IT)

● Big server/service migration in

summer 2017

● In general quite stable service

BUT

○ No standard service

restarts —> bottlenecks

with AFS based slaves

SLAVES
● Around 500 CPUs distributed among ubuntu/mac/slc6/centos6/fedora systems

● Docker containers (Centos7 VM) available for SLC6/Centos7/Ubuntu16/Ubuntu18/Fedora

● Entering 2 Techlab ARM64 machines with the latest HW

epsft-jenkins.cern.ch → accesible outside CERN

Information for users/developers: CDASH

21

cdash.cern.ch → accesible outside CERN

Information for users/developers: lcginfo

22

lcginfo.cern.ch → accesible outside CERN

Selection of releases

Documentation
Procedures information and documentation available at:

lcgdocs.web.cern.ch

23

(Some) Topics to discuss at the end of the

day

● AFS common deprecation strategy
○ Where are we at this moment?

● Evolution of build nodes
○ Role of HepOSlibs and its evolution

● Releases/software distribution
○ evolution and current status

● arm64 strategy

● Future of LIM
○ How would you like to focus it

● Anything you want to bring to the table

24

