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Group’s Goals
● Building, packaging and distributing software is a problem faced right across the 

HEP community (so, not just LHC or even CERN)
○ Every experiment and software group need to put effort into doing this

■ Naively it seems easy, quickly it gets complicated
○ Developers of libraries and toolkits need to care about easy integration into a stack

● So, prima facie, this is an area where we can work together to improve
○ Common build recipes and tools
○ How to take most advantage of technologies like containers
○ Proper support for developers in our collaborations

● Experiment production stacks are vital, but good tools and solutions will be 
completely portable to other use cases, e.g., lightweight releases for analysis or 
machine learning

http://hepsoftwarefoundation.org/activities/packaging.html 
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The N-Dimensional Problem

● Where N is surprisingly large…
○ Package set

■ Including versions, that may be locked or floating
■ Dependencies of packages

○ Target Architecture
■ Including micro-architecture variations

○ Compiler suite
■ gcc, clang, icc @my version

○ Set of compiler options
■ Usual opt and debug, plus any other variants

○ Host OS
■ May supply system libraries and build tools

● This is a very large space, but only sparsely filled
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Packing Group Report

● Group was very active in 2015 and 2016 and looked at many solutions in the 
space of build orchestration

○ That is, the problem of building a stack, as opposed to building an individual package
■ For the single package problem, CMake seems to be the de facto choice of the 

community for C/C++ projects, now widely used - that does nicely simplify things for many 
of our HEP specific packages

○ System needs to manage
■ Dependencies of each individual project
■ Setup of the correct build environment for each piece
■ Manage artefacts from the build for subsequent installation

○ Looked at tools from the community and in the wider FOSS world

http://hepsoftwarefoundation.org/notes/HSF-TN-2016-03.pdf 
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Post-Report 

● Checkpoint: Most promising tools seemed to be
○ From our community

■ LCGCMake
■ aliBuild

○ From wider scientific community
■ Spack

● Some prototype work done with Spack to adapt to our use cases
○ Proved Spack community was rather receptive to patches we provided for upstream

● Things went a bit quiet after that
○ Usual case of people being pulled off to other projects...
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Restart of activities

● Restarted activities in Autumn last year
○ Ben Morgan and Graeme Stewart took over from previous convenors

■ Thanks to Benedikt Hegner and Liz Sexton-Kennedy for their work

● Landscape changes
○ New tools arrive

■ Often with some enthusiastic proponents!
○ Use cases evolve
○ Experience is gained

● However, don’t start from zero - build on what we know
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The Sociological View

● We have a hierarchy 
of communities

● The bigger the 
community the more 
likely useful effort 
from others

● But the solution may 
not quite fit our 
needs

● Have to find the 
sweet spot

FOSS in
General

Science 
Communities

HEP
Expt.
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Use Cases

● Write down what the our use cases actually are
○ Define what problem it is that we want to solve

■ As opposed to “how” we solve it today
○ In particular, where do we differ from “normal” (e.g., a Linux distribution)

■ This can drive us to more specialised areas in the solution space

https://docs.google.com/document/d/1h-r3XPIXXxmr5tThIh6gu6VcXXRhBXtUuOv1
4ju3oTI/edit?usp=sharing 
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Use Case Highlights I

● Determinism
○ Better know what we did and have confidence we can redo it

● Multiple Build Flavours
○ Different compilers, different build flags must be supported (for the same code base)

● System Component Use
○ Should be able to build using some or other components of some base system (e.g., the base OS)
○ This can be in contradiction with the requirement for determinism - may affect reproducibility of the 

build and even the runtime

● Build Efficiency
○ Should exploit parallelism available during a build
○ Should be able to share identical components between builds (e.g., Python modules)
○ Reuse binary artefacts from a previous compile

● Chain Builds Together
○ E.g., LCG Build → Experiment Build → Developer Build
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Use Case Highlights II

● Share Recipe Knowledge
○ Build recipes should be easy to write as well, to maximise cooperation

● Deploy to Different Systems
○ E.g., Local, CVMFS, Container - install time relocation

● Deployment Independence
○ Deployed releases should not interfere with one another

■ But artefact sharing is very desirable

● Patch and Remove
○ Deployed releases should be updatable and removable

● Runtime Environment
■ Essential to set this up correctly
■ Needs to be flexible enough to support development
■ Can be partial to reflect a subset of a software build, such as a view
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HEP Specificities and talking points

● The need to have multiple releases, with different build flavours, deployed side 
by side

○ Relatively common in other sciences too

● Install time relocatability
○ Usually software is built knowing where it will be deployed too
○ Install time relocation sometimes poorly supported

■ A lot of community knowledge exists as to how to do this, but results are not always 100% 
reliable

● Use or exclusion of the system libraries
○ Here there is a significant difference between building a single piece of code and building a 

stack
■ For a single package, use of the system is essential
■ For a stack, as interdependence becomes larger, less clear
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Test Stack

● Define a basic set of software that would be representative of a small HEP 
experiment

○ Not meant to be complete, but not trivial either
○ ~45 packages

■ With their own implied dependencies
○ Can be used to ‘test drive’ different solutions

https://docs.google.com/document/d/1LW8OsTFFA9QwsJ9fASkRoJ2E6Gk3UGnO
QIcElCL8UCM/edit?usp=sharing
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Test Drive I

● Now that we defined a set of use cases we want to satisfy and a set of 
packages we want to support we can make some objective tests of the 
strengths and weaknesses of different tools

○ Someone who knows the tool should prepare a base environment in which the tool is setup 
correctly

■ We ask for this to be done as a Docker container on top of a CentOS7 base image
● Dockerfile is great for showing exactly what needs to be done

○ Add some instructions that demonstrate the basic steps of building using the tool and pointers 
to other documentation

■ This is the bootstrap guide
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Test Drive II

● Now have test drive instructions for number of tools
○ Nix
○ Portage
○ aliBuild
○ Spack
○ LCGCmake (being prepared)

● N.B. Being able to take the tool for a test drive is a pretty basic test (“Look! I am not 
broken”)

○ But it gives people a flavour of each tool
■ Important to test the ‘look and feel’

○ Serves as a basis for the other use cases (e.g., patching, moving binary artefacts elsewhere, etc.)

● You are very much encouraged to give this a try:
○ https://github.com/HSF/packaging/tree/master/testdrive 
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Talking Points
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Shallow vs. Deep Builds

● Building relying on the host system’s libraries and tools has been the usual 
way to build our stacks

○ Reduces build times
○ Offload maintenance to underlying OS

● However, this comes at a price
○ Builds become tied to the underlying OS
○ OS updates lead to reproducibility issues

● Building deep, up to or even including libc, increases build time once, but 
removes the axis of underlying OS from the equation

○ That provides some simplification and reliability
■ It’s one of the few axes we can remove from the space
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Package Hashes

● Dealing with a large multi-dimensional space of packages, dependencies and 
their build options

○ Encoding all options via the path is not very scalable
■ Paths can get really long
■ Metadata in “names” is fragile

● Very common solution is to convert the sources, dependencies and build 
options into a hash value

○ Keeps paths under control
○ Adaptable to a variable number of inputs into a package’s build formule

● Of course hashes are horrible to actually have in your path
○ Common to the construct a view of the release with some soft links

■ LCGCmake, Spack, Nix all use this mechanism
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Relocatability
● Traditionally we always supported this

○ Various mechanisms to do it, e.g., making relocatable RPMs, using simple tarballs

● Requires some gymnastics to ensure that the configuration gets updated correctly 
with the relocated paths

○ Has been a real pain point and can be hard to debug
○ Especially if system paths are left

■ Falling back to old system libraries can break things in subtle ways

● We do this to economise on CPU
○ But human cycles are much more costly than CPU cycles

● With the reduction in the number of paths used in practice (CVMFS) is relocatablity 
worthwhile investment anymore?

○ At least some people in the group think it may not be

● Install time relocation certainly missing from tools like Nix
○ In Spack we have added support for it
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Next Steps

● Continue with the evaluation of tools
○ Test drive makes this reasonably objective
○ Tradeoffs are part of life

■ We will not find one tool to rule them all
● We adapt code (contribute) and might trade off use cases (relocation)

● Conclude on a best practice recommendation
○ This may be suite of tools that cooperate nicely

■ Probably not desirable to have a monolithic solution

● Develop support and documentation for the community

Any work that people are doing in the build, packaging and deployment area is 
interesting for the group, so contributions very much welcomed
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Backup
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Early Observations on Tools

● Nix
○ Pure functional package manager
○ Generic FOSS
○ Builds very deeply (even libc) - excellent reproducibility
○ Excellent support for multiple versions and flexibly constructed sub-environments
○ Not binary relocatable - install path (default, /nix) is a part of the package hash

■ One area to install and deploy, must be writable
■ Hard for CVMFS (read only) and for users (overlay FS?)

○ Package description language is a customised functional DSL - alien for HEP people

● Guix
○ GNU functional package manager
○ Very like Nix (see above)
○ Uses scheme instead of DSL (also alien)

21

https://nixos.org/
https://www.gnu.org/software/guix/


Early Observations on Tools

● Portage
○ Package manager from Gentoo Linux (generic)
○ Can be installed “on top” of any other Linux base OS as well
○ Builds deep, own libc
○ Supports multiple versions, upgrade and rollback, but only one active version at a time

■ At least on any single path “prefix” (but you can have a few of these)
○ Does support relocation

● Spack
○ Developed at LLNL for supporting HPC software
○ Significant number of other users from difference science communities
○ Builds deep (by default), but can be told about system libraries
○ Support for relocation was added by us
○ Chained builds (one Spack on top of another) is a PR
○ Runtime/development environment is a WIP (Chris Green, FNAL)
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Early Observations on Tools

● aliBuild
○ Used only by ALICE (maybe SHiP?)
○ Optimised for HEP use
○ Very flexible in use (or not) of system libraries

■ Good for end users in particular
○ Robust relocation
○ Limited support at the moment (Giulio cloning required)

● LCGCMake
○ Well known to everyone here!
○ Shallower builds by default (different default from other systems)
○ Small user community (SFT++)

■ We own it - get to fix, enhance and break it as we like
○ Known operational issues are a lot of the focus of this workshop

■ But, rather unfair to directly compare in this respect to non-battle tested tools
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