ATLAS/CMS jet uncertainties and correlations

ATLAS: Bogdan Malaescu, <u>Steven Schramm</u>, Dimitris Varouchas CMS: Henning Kirschenmann, Mikko Voutilainen

LHC EW WG Meeting May 4, 2018

- These slides are a nearly direct copy from a past talk I gave
 - November 22, 2016 LHC top WG meeting
- Since then, there have been no official updates
 - As we near the end of run 2, interest is again growing
 - We have been trying to meet again for months
 - Waiting for final confirmation, hopefully will start soon
- The following is therefore the run 1 recommendations
 - There will be a few comments on run 2, but not the focus
 - We hope to cross-check/update these recommendations "soon"

Introduction

- ATLAS and CMS place strong constraints on top-related observables
 - Combining results further improves these precision measurements
 - Requires knowledge of the inter-experimental uncertainty correlations
- The Jet Energy Scale/Correction (JES/JEC) uncertainties are often the dominant experimental systematic in top combinations
 - Depending on the analysis, I imagine they can be for EW too
- $\bullet\,$ Correlation procedures have been defined for $7\,{\rm TeV}$ and $8\,{\rm TeV}$
 - $\bullet~\ensuremath{\mathrm{TeV}}$ document is an incremental update, same general idea
- $\bullet\,$ Can the same procedures be extended to 13 ${\rm TeV}?$
 - $\bullet\,$ Need to understand what has changed since $8\,{\rm TeV}$

Jet calibration, MC

The MC-based calibration accounts for the detector response profile

- Calibrates jets to the truth hadron scale, applied to data and MC
- Different detector features are can be seen
 - However, similar general trends are visible

Jet calibration, in situ

• Applying MC-based calibration to data needs to be studied in situ

- $\bullet\,$ Experiments use same three primary approaches to cover $p_{\rm T}$ range
 - Z+jet, γ +jet, multi-jet balance (increasing $p_{\rm T}$ order)
- Some clear differences in data/MC ratio between Run I and Run II
 - ATLAS: largest impact from Geant4 simulation change (since reduced)
 - CMS: observed differences becoming smaller in re-reconstructed data
- Central value is corrected for both, not a problem for combination

JES/JEC uncertainties

(ATLAS,CMS) UNIVERSITÉ

• Final systematics combination of in situ and other sources

- Absolute label represents Z+jet, γ +jet, and multi-jet balance terms
- Relative label represents di-jet balance calibration of forward vs central
 - Larger and more relevant in forward regions

• Vertical scales are aligned for ease of comparison, but this is 2015

Correlations between ATLAS and CMS (approved note) UNIVERSITÉ

- The JES/JEC uncertainty is built from many uncertainty sources
 - First step: merge components of similar types into groups
- Experiments have uncertainties to cover roughly the same effects
 - Absolute scale, relative scale, pileup, flavour, ...
 - Second step: identify corresponding groups of uncertainty components
- The methods used to derive the uncertainties may vary
 - Different MC generators for differences, different parametrizations, ...
 - Third step: determine the degree of similarity in the derivation method
- $\bullet\,$ The next slide quickly covers the $8\,{\rm TeV}$ recommendation
 - The recommendation is divided into nine groups of components

$8\,{\rm TeV}$ combination procedure

(approved note) UNIVERSITÉ DE GENÈVE

Description	Components, CMS	Components, ATLAS	Corr. range
1a. Statistical <i>in situ</i> terms	AbsoluteStat, SinglePionHCAL, RelativeStat[FSR][EC2][HF]	 [11] Z-jet balance stat./meth. terms (p_T), [13] γ-jet balance stat./meth. terms (p_T), [10] multi-jet balance stat./meth. terms (p_T), η-intercalibration statistical term (p_T,η) 	0%
1b. Detector in situ terms	AbsoluteScale, SinglePionECAL, RelativeJER[EC1][EC2][HF], RelativePt[BB][EC1][EC2][HF]	Z -jet balance det. term, γ -jet balance det. term, [2] correlated Z / γ -jet balance det. terms (p_T)	0%
2. Absolute balance modeling	AbsoluteMPFBias	 [7] Z-jet balance model + mixed terms (p_T), [4] y-jet balance model + mixed terms (p_T), [2] correlated Z/y-jet balance terms (p_T), [5] multi-jet balance model + mixed terms (p_T) 	0-50%
3. Relative balance modeling	RelativeFSR	η -intercalibration modeling (p_T, η)	50-100%
g-jet fragmentation	FlavorPureGluon	Flavor response (p_T, η)	100%
b-jet fragmentation	FlavorPureBottom	b-jet response (p _T)	50-100%
6. Other fragmentation types	FlavorPureQuark, FlavorPureCharm	Flavor composition (p_T, η)	0%
7. Pileup	PileupDataMC, PileupPt[Ref][BB][EC1][EC2][HF]	N_{PV} offset $(p_{\text{T}}, \eta, N_{\text{PV}}), \langle \mu \rangle$ offset $(p_{\text{T}}, \eta, \langle \mu \rangle),$ p_{T} term $(p_{\text{T}}, \eta, N_{\text{PV}}, \langle \mu \rangle), \rho$ topology (p_{T}, η)	0%
8. High- <i>p</i> _T	Fragmentation	High- $p_{\rm T}$ ($p_{\rm T}$)	0%
9. Single-experiment terms	TimeEta, TimePt	Fast simulation closure (p_T, η) , punch-through $(p_T, \eta, N_{\text{segments}})$	0%

• There are nine uncertainty groups to correlate between experiments

- Uncertainties should be merged within each experiment for each group
- The nine resulting per-experiment components should be combined (pairwise across experiments) following the specified correlation range
- These nine terms should not be merged before the combination

Limitations of the procedure

- The procedure described is useful, but not perfect
- Combinations must pay attention to the following limitations
 - 1. The correlation ranges are motivated, but the endpoints are arbitrary
 - If large differences are observed near endpoints when scanning over the range, extend the endpoint and perform more detailed studies
 - 2. Merging the components within a given group throws away shape info
 - Procedure is primarily aimed at single-observable results (top mass)
 - Limited uses when applied to multi-observable results (differential xsec)
- The procedure is expected to work well for most combinations
 - For run 2, it would be useful to revisit shapes for combinations

Changes to JES/JEC uncertainties

- ATLAS and CMS have made minor changes in early Run II
 - Run II JES/JEC uncertainty approaches very similar to 2012
 - Note: this may have changed since Nov 2016, needs to be re-confirmed
- Most differences involve changing the number of *in situ* cut variations
 - Does not impact correlation procedure
- One larger change by ATLAS to the multi-jet balance
 - All recoil system jet uncertainties should be propagated to probe jet
 - Before, only in situ Z+jet and γ +jet terms were propagated
 - Flavour, pileup, etc are now propagated through multi-jet balance
 - More details on next slide

Multi-jet balance propagation change (ATLAS,CMS) De GENÈVE

- Propagation will change correlations if CMS does not also do so
 - CMS had agreed to look into the possibility of doing this for run 2
 - Otherwise correlation level will decrease, needs to be re-evaluated
- $\bullet\,$ Multi-jet balance only relevant for $p_{\rm T}\gtrsim 600\,{\rm GeV}$
 - Unlikely to be a concern for most combinations, but some will care

Looking to the future: JER

- JER is also an important systematic for many measurements
- Traditionally a single uncertainty component from dijet asymmetry
 - ATLAS has performed a full Z+jet, $\gamma+{\rm jet},$ and dijet JER combination
 - Resulting JER uncertainty has several components, not widely used
- With several components, becomes possible to evaluate correlations
 - Interesting possibility for both experiments to pursue in the future

(ATLAS) UNIVERSITÉ

Looking to the future: JER

- JER is also an important systematic for many measurements
- Traditionally a single uncertainty component from dijet asymmetry
 - ATLAS has performed a full Z+jet, $\gamma+{\rm jet},$ and dijet JER combination
 - Resulting JER uncertainty has several components, not widely used
- With several components, becomes possible to evaluate correlations
 - Interesting possibility for both experiments to pursue in the future

Summary

- $\bullet\,$ Correlation procedures previously defined for $7~{\rm TeV}$ and $8~{\rm TeV}$
 - Supports combinations of single-observable measurements
 - Has limitations for multi-observable results (such as differential xsec)
- \bullet Methods used by ATLAS/CMS to derive 13 ${\rm TeV}$ JES/JEC uncertainties are mostly similar to the 8 ${\rm TeV}$ approach
 - Main difference is ATLAS propagation through multi-jet balance
 - Correlation ranges to be re-evaluated if CMS does not do the same
 - $\bullet\,$ Minimal impact on most measurements, relevant for $p_{\rm T}\gtrsim 600\,{\rm GeV}$
- Given similarities of 8 and 13 ${\rm TeV}$ JES /JEC uncertainty derivations, 8 ${\rm TeV}$ combination procedure is a good starting point for 13 ${\rm TeV}$
 - Need to check if this is still true for full run 2
- Looking to the future, a similar approach for the JER would be useful

Backup Material

JES/JEC factors, 2012 vs 2015

Backup

19.7 fb⁻¹ (8 TeV)

1000 p_ (GeV)

1000

p_ (GeV)

Steven Schramm (Université de Genève) ATLAS/CMS jet uncertainties & correlations