

1

Thoughts on storing and manipulating Covariance Info in Rivet

Louie Corpe (UCL)

LHC-EW WG: Jets and EW bosons Meeting

04 May 2018

Louie Corpe, UCL (I.corpe@ucl.ac.uk)

Introduction

- Comparing generator performance typically uses data/MC ratio in a set of observables... But as J(Lumi) grows, simple ratio no longer suitable since (correlated) systematic uncertainties > stat uncertainties
- Start looking into how to evaluate GoF in presence correlated systematic uncertainties. What tools are needed to manipulate covariance info/correctly evaluate generator agreement with data ?
- Used **augmented YODA format** and **standalone functions**. Work ongoing with Rivet devs to **back-propagate this work into Rivet/YODA**
- Disclaimer: this talk details some of the methods, and suggestions arising from my discussions with ATLAS, Rivet developers. I am not speaking for ATLAS collaboration as a whole or for Rivet developers!

Scope and relevant questions

- One possible workflow, which I've used so far:
 - Access HEPData record for a given RIVET analysis. Most importantly, needs full breakdown of experimental uncertainties for each observable.
 (*How should we be storing covariance info on HEPData?*)
 - Mark-up Data YODA file with variation in each bin for each named uncertainty source. Currently using a YAML-format annotation in text-based YODA files. (*How should we be storing covariance info in YODA files?*)
 - Built covariance matrix from the uncertainty breakdown (2 methods possible) (*How to get Cov matrix from Error breakdown?*)
 - If MC prediction comes with Theory uncertainties, do the same and add covariance matrices together. Use covariance matrix to evaluate GoF using the covariance info. (*What is appropriate GoF measure?*)

Storing Cov info on HEPdata

HEPData submission format is not currently set up for storing covariance info. Also no agreed format... here are my two cents.

- Best-case scenario: Errors split by individual syst contribution per bin Pros: can reconstruct Cov matrix + correlate w/ other measurements Cons: assumes errors fully correlated across/between distributions and up/down variation defined consistently
- Second-best scenario: Exact cov matrix provided directly by analysts
 Pros: Cov matrix directly in hand
 Cons: Not always possible to correlate w/ other measurements...
 Probably need to do this anyway for statistical correlations..
- To be avoided: Errors split by aggregated source only(eg stat & syst)
 Pros: Better than ignoring correlations completely...
 Cons: Cov matrix can only be roughly approximated...
 We should really be doing better than this
 Louie Corpe, UCL (I.corpe@ucl.ac.uk)

Storing covariance info in YODA/Rivet

- The workaround I have adopted for now: store detailed uncertainty breakdown as YODA annotations in YAML format: trivial to store and read, and can handle complex structures.
- But this is a fairly crude approach... but works out of the box.

BEGIN YODA_SCATTER2D /EXAMP	LE			17
Corr={0: {stat: {dn: -1., u	p: 1.}, eff: {dn: -0.1, up	: 0.1}}, 1: {stat:	: {dn: -1.73205,	import yoda, yaml
Path=/EXAMPLE				hists = yoda.read('/afs/cern.ch/user/l/lcorpe/v
Title=				h=hists['/ATLAS_2017_I1514251/d01-x06-y0
Type=Scatter2D				corr= h.annotation('Corr')
# xval xerr- xerr+	yval yerr- yerr+			a = yaml.load(corr)
1.00000e+00 0.500000e+00	0.500000e+00 1.00000e+	00 1.00000e+00	1.00000e+00	a.keys() > [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13]
2.00000e+00 0.500000e+00	0.500000e+00 3.00000e+	00 1.73205e+00	1.73205e+00	a[0].keys()
3.00000e+00 0.500000e+00	0.500000e+00 9.00000e+	00 3.00000e+00	3.00000e+00	-> ['alphas', 'stat', 'scale', 'norm', 'pdf']
END YODA_SCATTER2D				a[0]['stat']
				> {'dn': -0.01772649, 'up': 0.01772649}

- Better: modify the YODA "Point" class. Currently has 1 central value and errors (up,down). Replace errors with vector of (label, up,down) pairs to store arbitrary number of variations.
- Rivet workshop this month watch this space

Producing a Cov Matrix from uncertainty breakdown

- Two methods to produce Cov matrix from uncert breakdown:
 - **Direct propagation** of errors (outer product for correlated, diag² for uncorrelated). E.g in Professor 1.4.0, used for tuning
 - Fast, easy to implement, but cannot handle asymm errors
 - From pseudo-experiments (toys). E.g as done in top group to evaluate goodness of fit
 - Slow, depends on nToys but handles asymmetric errors
- Cov matrices reconstructed from (sufficiently) granular uncertainty breakdown likely to be **sufficient for most use cases**
- Open question: **how to handle local correlations** (eg neighbouring bins, but not across the whole distribution)?
- Both options can be propagated into YODA

Goodness of Fit options

• For now, use **a simple x2** which accounts for the cov matrices:

$$\chi^2 = (\vec{x} - \vec{\mu})^T C^{-1} (\vec{x} - \vec{\mu}) \tag{4}$$

where \vec{x} is the vector of data, $\vec{\mu}$ the interpolated MC prediction and C the covariance matrix of the data.

- In future, more complex goodness of fit measures may be explored.
 - eg Nuisance parameter representation? as used by HERAFitter

$$\chi^{2}(m,b) = \sum_{i} \frac{\left[\mu_{i} - m_{i}\left(1 - \sum_{j} \gamma_{j}^{i} b_{j}\right)\right]^{2}}{\delta_{i,\text{unc}}^{2} m_{i}^{2} + \delta_{i,\text{stat}}^{2} \mu_{i} m_{i}\left(1 - \sum_{j} \gamma_{j}^{i} b_{j}\right)} + \sum_{j} b_{j}^{2},$$

https://arxiv.org/pdf/ 1410.4412.pdf (eq 20)

Summary

- Including covariance info into GoF calculations is becoming increasingly critical in evaluating generator performance.
- What's needed?
- Tools to include cov info in YODA files
- Need for a common HEPData convention.
 - My suggestion is a breakdown of uncertainty
 - The cov matrix can then be constructed from that
- Some tools may be back-propagated into YODA/Rivet
 - Work ongoing
- Watch this space Louie Corpe, UCL (I.corpe@ucl.ac.uk)

[BACKUP]

Louie Corpe, UCL (l.corpe@ucl.ac.uk)