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2008-2018: FROM ASHES TO HIGGS

 2008: Incident due to faulty splices

 2009: Repair

 2010-2012: Run at 7-8 TeV

 2012: Higgs boson discovery

E. Todesco 3
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2008-2018: WHY 4 TeV ? 

 In Run I energy limited to 4+4 TeV due to faulty splices
 Unforeseen limitation, due to a weakness in the interconnection between the 

superconducting magnets

 Repair in 2008 of the damaged sector

 Cause of the incident was not removed, so energy limited by maximum current
tolerable by the splices

 Initial estimate was 3.5 TeV per proton beam (7 TeV center of mass)

 Then brough to 4 TeV per proton beam

 Succesful consolidation of all splices in 2013-2014 (LS1) to remove 
this bottleneck

E. Todesco 4

Cross-section of the intreconnection and radiography showing missing continuity

[F. Bordry, J. P. Tock and LS1 team]
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2008-2018: WHY 6.5 TeV ? 

 After LS1, we met the second bottleneck in energy: training of the 
magnets

 Training is one of the most obscure and fascinating and phenomena of 
applied superconductivity
 The magnet is designed to reach a maximum field of X tesla

 When you first power, it reaches only a fraction of X (typically 70%), then it has a 
irriversible transition to normal state (quench)

 This transition bring some zones of the magnet from 1.9 K to 300 K

 The thermal and mechanical shock allow at the successive powering to reach a higher 
fraction of X tesla (the magnet trains)

 It is extremely rare that a magnet reaches 100% of X tesla, typically 
training of a good magnet saturates at 90%-95% 

 Typically accelerator magnets operate at 70-90% of the maximum 
reachable field

 This margin is quite expensive, how much is really needed is a open 
debate in our community

 LHC dipoles at 8.3 T (corresponding to 7 TeV energy) run at 86% of maximum 
reachable field

E. Todesco 5
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2008-2018: WHY 6.5 TeV ? 

 All LHC dipoles were trained above 8.3 T (7 TeV per proton) on 
individual test bench
 Half of them were trained to 9 T (7.5 TeV per proton)

 After installation, negligible retraining was expected (order 100 quenches for 
the whole machine to operate at 7 TeV)

 Before the incident one sector was powered towards 7 TeV, showing a worse 
performance (20 quenches to reach 6.5 TeV in 1/8 of the machine)
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2008-2018: WHY 6.5 TeV ? 

 After the LS1 consolidation of splices, it was decided to aim at 6.5 
TeV operation
 We expected order of 100 quenches, we needed with 172 quenches

 With the confirmation of highly unexpected behaviours already observed in 
2008 (see next sections about spread): magnets from Firm3 need many more 
quenches than the other magnets

E. Todesco 7
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2008-2018: LUMINOSITY

 The spectacular progression of data accumulation

E. Todesco 9
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2008-2018: LUMINOSITY

E. Todesco 10

 Equation for the luminosity

Accelerator features
Energy of the machine 7 TeV

Length of the machine 27 km

Beam intensity features
Nb Number of particles per bunch 1.151011

nb Number of bunches ~2808

Beam geometry features
en Size of the beam from injectors: 3.75 mm mrad

b* Squeeze of the beam in IP (LHC optics): 55 cm

F: geometry reduction factor: 0.84
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2008-2018: LUMINOSITY
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 Equation for the luminosity

 We will outline some of the luminosity limits
 Beam beam (limit on Nb/en)

 Electron cloud (limit on nb)

 Squeeze (limit on b* en)

 Injectors (limit on Nb, nb, en)
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THE BEAM-BEAM LIMIT

E. Todesco 12

 The beam-beam limit (Coulomb)

 Nb Number of particles per bunch         en transverse size of beam

 One cannot put too many particles in a “small space” (brightness)

 Otherwise the Coulomb interaction seen by a single particle when collides against 
the other bunch creates instabilities (tune-shift)

 This is an empirical limit, also related to nonlinearities in the lattice

 LHC has very low nonlinearities  larger limits

 LHC behaves better than expected: beam-beam up to 0.03 tolerable

 LHC in 2018 has run with 0.015 beam-beam parameter

?01.0
4


n

bp

IP

Nr
n

e


F
f

nN
N

F
fnN

L rev

bb

n

b

n

revbb

**

2

44 b



ebe




Nominal Ultimate 2012 2012 MD 2018

Nb (adim) 1.15E+11 1.70E+11 1.55E+11 2.20E+11 1.10E+11

en (m) 3.75E-06 3.75E-06 2.50E-06 1.70E-06 1.80E-06

IP (adim) 0.0037 0.0055 0.0075 0.0157 0.0074

NIP (adim) 2 2 2 2 2

 (adim) 0.007 0.011 0.015 0.031 0.015
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THE ELECTRON CLOUD LIMIT

E. Todesco 13

 The electron cloud

 This  is related to the extraction of electrons in the vacuum chamber from the 
beam

 A critical parameter is the spacing of the bunches: smaller spacing larger 
electron cloud – threshold effect

 So this effect pushes for 50 ns w.r.t. 25 ns

 Spacing (length)  spacing (time)  number of bunches nb
7.5 m             25 ns          3560 free bunches (2808 used)
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Mechanism of electron cloud formation [F. Ruggiero]
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THE ELECTRON CLOUD LIMIT

E. Todesco 14

 Electron cloud has been observed where expected in RunI during 50 ns 
intensity ramp up

 Was cured by scrubbing of surface with intense beam 

 In RunI we operated in a reliable way with 1300 bunches at 50 ns 

 RunII worked with 25 ns as baseline

 Looks non trivial but feasible

 More sensitive to other effects (see section on spread and strange beasts)

 2556 bunches reached instead of the nominal 2808

 Scrubbing run effective
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THE OPTICS LIMIT

E. Todesco 15

 Optics: squeezing the beam

 Size of the beam in a magnetic lattice

 Luminosity is inverse prop to e and b*

 In the free path (no accelerator magnets) around the experiment, the b* 
has a  nasty dependence 

with s distance to IP

 The limit to the squeeze is the magnet aperture

 Key word for magnets in HL LHC: not stronger but larger
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 Optics: squeezing the beam

 Size of the beam in a magnetic lattice

 LHC was designed to reach b* = 55 cm  with 70 mm aperture IR quads

 In RunI, less energy  larger beam  higher b*

 But lower emittance (2.5 instead of 3.75 mm), so we manage to run at 60 cm

 In RunII, we arrived to run at 25 cm

THE OPTICS LIMIT

E. Todesco 16
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THE INJECTOR LIMIT

 Injectors can provide beams with only a given combination of 
parameters

E. Todesco 17

2017
2012, 50 ns

2018, 25 ns Target for 
2026, HL-LHC



logo

area

2008-2018: LUMINOSITY

 Summary of conditions in the runs
 Note: in 2018 we started using levelling to reduce pile up

E. Todesco 18

Nominal

Nb (adim) 1.15E+11 1.50E+11 1.70 1.60E+11 1.94 1.15E+11 1.00 1.15E+11 1.00 1.17E+11 1.04 1.10E+11 0.91

en (m) 3.75E-06 2.40E-06 1.56 2.50E-06 1.50 3.50E-06 1.07 2.20E-06 1.70 2.25E-06 1.67 2.00E-06 1.88

nb (adim) 2808 1380 0.49 1380 0.49 2244 0.80 2220 0.79 2556 0.91 2556 0.91

b
*

(m) 0.55 1.00 0.55 0.60 0.92 0.80 0.69 0.40 1.38 0.40 1.38 0.25 2.20

spacing (ns) 25 50 50 25 25 25 25

E (TeV) 7.0 3.5 0.50 4.0 0.57 6.5 0.93 6.5 0.93 6.5 0.93 6.5 0.93

X angle (mrad) 142.5 185 185 185 140 150 150

F (adim) 0.840 0.836 1.00 0.748 0.89 0.770 0.92 0.732 0.87 0.712 0.85 0.603 0.72

L (cm
-2

 s
-1

) 1.00E+34 3.6E+33 0.36 6.7E+33 0.67 5.0E+33 0.50 1.5E+34 1.50 1.70E+34 1.70 2.29E+34 2.29

pile up 26 19 36 16 50 49 66

sz (mm) 75.5 90 90 90 75 75 75

 (adim) 7448 3724 4256 6916 6916 6916 6916

s
*

(mm) 1.66E-02 2.54E-02 1.88E-02 2.01E-02 1.13E-02 1.14E-02 8.50E-03

2011 20152012 2016 2017 2018
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DIRTY BEASTS

 And the UFO appeared in Geneva …
 Particles of dust moved by the beam (electrostatics), rapidly burned by the 

beam

 Losses can cause interlocks of beam related to beam loss monitor

 Very worrying in 2015, but conditioning visible so not an issue today

 What after the large intervention of LS2 ?

E. Todesco 20

Number of UFO (above given threshold) observed in past years 
(F. Bordry, HL-LHC meeting 2018)

War of the worlds  (B. Haskin, Paramount, 1953)
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DIRTY BEASTS

 ULO (2015 and 2016)
 Unidentified Lying Object in cell 15 right of point 8

 Provoking UFO and beam losses

 Frozen object, visible with beam scan, of few mm on the bottom of the vacuum 
chamber

 Bypassed by a chicane via orbit correctors

 16L2 (2017 and 2018)
 Significant beam losses in cell 16 left of point 2, affecting operation in 2017 and 

2018

 Air inlet during cool down is the most probable cause

 Bypassed by changing the pattern of bunches

E. Todesco 21

D. Mirarchi, Evian workshop 2015 
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THE MENACE OF SPREAD

 Spread in arc performance observed in RunII
 4 consecutive arcs have a much higher (twice) heat load than the other 4

 Source is most likely the electron cloud, generated by different surface 
properties (SEY, impurities?)

 Not understood

 The higher load sectors are touching the limit of cryogenics, could affect HL 
LHC

E. Todesco 22

Acceleration Collisions

Heat load measured in the different sectors (G. Iadarola, LMC 2018)
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THE MENACE OF SPREAD

 To reach 6.5 TeV, large spread between the three magnet 
manufacturers
 Firm1: 5% of quenches

 Firm2: 25% of quenches

 Firm3: 70% of quenches

 Note that
 All magnets made with the same design and procedures provided by CERN

 Spread of performance is not only between producers, but also during time

 This behaviour is one of the main enigma of the LHC magnets

E. Todesco 23
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(E. Todesco et al. IEEE Trans Appl Supercond 2017)
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FROM 13 TO 14 TeV

 During the training to 6.5 TeV, two shorts appeared in the diode 
box of the dipoles
 Due to weakness in design of diode insulation

 Cured by a bold action: pulse of current to burn the short (A. Siemko and team)

 It worked, but the management decided to go for a global diode consolidation 
in LS2 (J. M. Jimenez, J. P. Tock et al.)

 This shall allow to carry on massive campaign of training if needed

 The decision of the management is to run at 7+7 TeV after LS2
 Order of 500 quenches expected,

based on the observation that the quench

distribution is not far from a Gaussian

 The training to 7 TeV will also tell us

more about the possibility of training

at 7.5 TeV (remote hypothesis, but not excluded)

E. Todesco 25
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THE 20’s: TOWARDS 4000 fb-1

 HL-LHC project (L.Rossi) 
 10 times more data in the decade 2025-2035

E. Todesco 26
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LHC UPGRADE

 Upgrade relying on several technological pillars

E. Todesco 27
HL LHC main technologies [L. Rossi]

20 large aperture quadrupoles

+other 60 IR magnets

to be installed in 2025
(WP3, E. Todesco)

4 high field dipoles 

to make space 

for colllimators

to be installed in 2021
(WP11, F. Savary)
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THE 20’s: TOWARDS 4000 fb-1

 HL-LHC project (L.Rossi) 
 10 times more data in the decade 2025-2035

 How increase performance in such a good machine?
 With 950 MCHF, 12 T magnets, and ten years work

 The path to more data
 Double beam intensity to 2.2×1011 proton per bunch (together with LIU project)

 Half the beam size by doubling the magnet aperture around the IR

 Killing the adverse effects of crossing angle through crab cavities or flat beams

 Plus make use of two essential tools
 Luminosity levelling (already operational since 2017)

 Novel optics to correct chromaticity (ATS scheme, S. Fartoukh)

 In terms of magnets, HL LHC shall make use of a technology 
Nb3Sn that has the potential of going from 8 to 16 T

E. Todesco 28
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THE SCALE TOWARDS HIGHER FIELDS

 The 80’s: 4 T in Tevatron
 Nb-Ti at 4.2 K, 15 mm coil

 The 90’s: 6 T in SSC prototypes
 Nb-Ti at 4.2 K, 30 mm coil

 The 90’s: 8 T in LHC prototypes
 Nb-Ti at 1.9 K, 30 mm coil

 The 00’s: 8 T in LHC 
 Nb-Ti at 1.9 K, 30 mm coil

 The 00’s: 10 T in LARP prototypes
 Nb3Sn at 1.9 K, 30 mm coil

 The 10’s: 12 T in HL-LHC
 Nb3Sn at 1.9 K, 35 mm coil

 The 20’s: aiming to 16 T in FCC
 Nb3Sn at 1.9 K, 50 mm coil

E. Todesco 29
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SUPERCONDUCTING MATERIALS 
TOWARDS HIGHER FIELDS

 Superconductivity is a quantistic property that is limited by 
temperature, magnetic field and current density
 Usually everybody talks about temperature – for HEP the most relevant are 

current density (compact device) and field (max attainable field)

 The hidden variable of this plot is the price – an essential ingredient

E. Todesco 30

Critical surface of some superconducting materials 

at 4.5 K (unless specified) (courtesy of P. Lee)
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PRESENT ACHIEVEMENTS

 In accelerators:
 Nb-Ti technology used in several machines, up to 8 T in the LHC

 Nb3Sn technology to be used in HL-LHC (12 T range), full length prototypes 
under construction – short model program aiming at 16 T for FCC is ongoing

 HTS technology being developed to build inserts to boost the field from 16 to 
24 T – racetracks and short models providing 3-5 T have been built and tested 
in standalone configuration

E. Todesco 31

Operated in particle accelerators

HL LHC
Nb3Sn

Nb-Ti

Hall of fame of Nb-Ti and Nb3Sn accelerator magnets [L. Bottura, MT25]
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SUMMARY OF THE TESLA RACE

E. Todesco 32

16 T
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THE 30’s: TOWARDS 30-100 TeV

 For an accelerator, more energy can be obtained through larger 
size (brute force) or larger field (technological advance)

 Having a magnet in the 14-16 T range, one can envisage two 
options
 HE-LHC: replacing the LHC lattice with Nb3Sn dipoles to double the LHC 

energy (around 30 TeV)

 FCC: New tunnel of 100 km, with Nb3Sn dipoles (around 100 TeV)

 Cost and time are a major point
 The last teslas are very expensive 

and can take a lot of time

E. Todesco 33

Critical surface for Nb-Ti: j versus B and magnet loadline
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CONCLUSIONS

 LHC proves to be a very flexible accelerator, and reached ultimate 
luminosity at 6.5 TeV

 Plans for 2021-2023
 Increase the energy to 7+7 TeV

 Substantial interventions on the LHC, recover the pre-LS2 performance could 
take time

 Plans for 2026-2035
 Ten times more data through a double beam intensity, half of beam size, and 

heavvy use of levelling and new optics

 This will prove the ability of Nb3Sn technology of providing 12 T magnets – 4 T 
jump in field for accelerator magnets

 After HL-LHC
 Making use of Nb3Sn technology at 16 T to increase energy to 30 TeV (in LHC 

tunnel) or to 100 TeV (in a new 100 km tunnel)

 Possibility of boosting up to 20-25 T with HTS (under study)

 Input of physics is essential … 

E. Todesco 34


