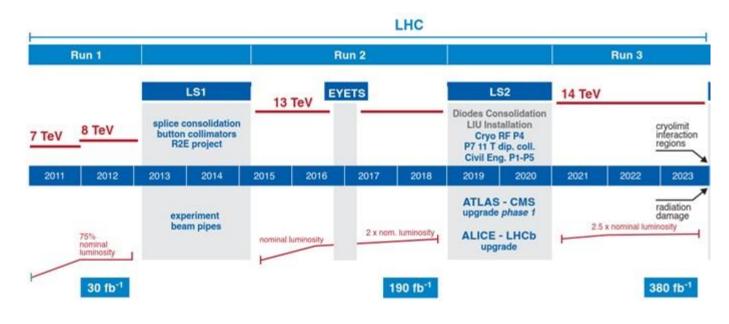


LHC: past, present and future

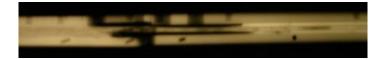
E. Todesco CERN, Technology Department Magnet Superconductors and Cryostat Group


Italian teacher program, CERN 18 March 2019

CONTENTS

- Where are we?
 - Energy
 - Luminosity
 - Dirty beasts and the menace of spread
- Where are we going?
 - From 13 to 14 TeV (15 ?)
 - Towards 4000 fb⁻¹
 - Towards 35-100 TeV

2008-2018: FROM ASHES TO HIGGS


- 2008: Incident due to faulty splices
- 2009: Repair
- 2010-2012: Run at 7-8 TeV
- 2012: Higgs boson discovery

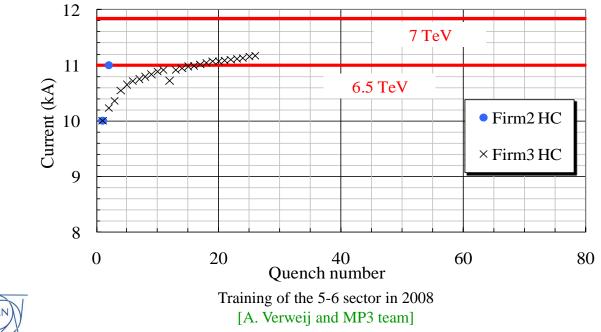
2008-2018: WHY 4 TeV ?

- In Run I energy limited to 4+4 TeV due to faulty splices
 - Unforeseen limitation, due to a weakness in the interconnection between the superconducting magnets
 - Repair in 2008 of the damaged sector
 - Cause of the incident was not removed, so energy limited by maximum current tolerable by the splices
 - Initial estimate was 3.5 TeV per proton beam (7 TeV center of mass)
 - Then brough to 4 TeV per proton beam

Cross-section of the intreconnection and radiography showing missing continuity [F. Bordry, J. P. Tock and LS1 team]

 Succesful consolidation of all splices in 2013-2014 (LS1) to remove this bottleneck

2008-2018: WHY 6.5 TeV ?


- After LS1, we met the second bottleneck in energy: training of the magnets
- Training is one of the most obscure and fascinating and phenomena of applied superconductivity
 - The magnet is designed to reach a maximum field of X tesla
 - When you first power, it reaches only a fraction of X (typically 70%), then it has a irriversible transition to normal state (quench)
 - This transition bring some zones of the magnet from 1.9 K to 300 K
 - The thermal and mechanical shock allow at the successive powering to reach a higher fraction of X tesla (the magnet trains)
 - It is extremely rare that a magnet reaches 100% of X tesla, typically training of a good magnet saturates at 90%-95%
 - Typically accelerator magnets operate at 70-90% of the maximum reachable field
 - This margin is quite expensive, how much is really needed is a open debate in our community
 - LHC dipoles at 8.3 T (corresponding to 7 TeV energy) run at 86% of maximum reachable field

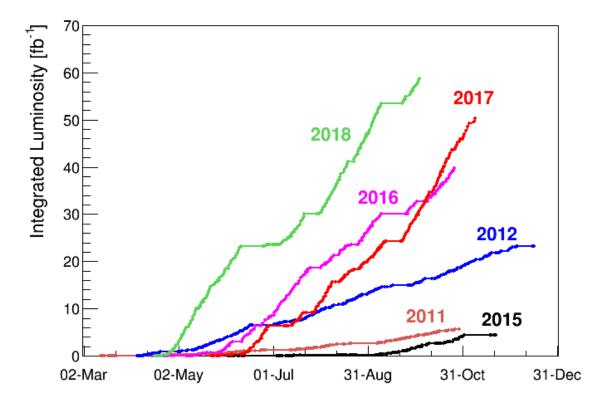
5

2008-2018: WHY 6.5 TeV ?

- All LHC dipoles were trained above 8.3 T (7 TeV per proton) on individual test bench
 - Half of them were trained to 9 T (7.5 TeV per proton)
 - After installation, negligible retraining was expected (order 100 quenches for the whole machine to operate at 7 TeV)
 - Before the incident one sector was powered towards 7 TeV, showing a worse performance (20 quenches to reach 6.5 TeV in 1/8 of the machine)

2008-2018: WHY 6.5 TeV ?

- After the LS1 consolidation of splices, it was decided to aim at 6.5 TeV operation
 - We expected order of 100 quenches, we needed with 172 quenches
 - With the confirmation of highly unexpected behaviours already observed in 2008 (see next sections about spread): magnets from Firm3 need many more quenches than the other magnets



CONTENTS

- Where are we?
 - Energy
 - Luminosity
 - Dirty beasts and the menace of spread
- Where are we going?
 - From 13 to 14 TeV (15 ?)
 - Towards 4000 fb-1
 - Towards 35-100 TeV

• The spectacular progression of data accumulation

• Equation for the luminosity

$$L = \frac{N_b^2 n_b f_{rev} \gamma}{4\pi \varepsilon_n \beta^*} F = \frac{c}{4\pi} \frac{\gamma}{l} N_b^2 n_b \frac{1}{\varepsilon_n \beta^*} F$$

Accelerator features

Energy of the machine 7 TeV Length of the machine 27 km

Beam intensity features N_b Number of particles per bunch 1.15×10^{11} n_b Number of bunches ~2808

Beam geometry features

 ϵ_n Size of the beam from injectors: 3.75 mm mrad β^* Squeeze of the beam in IP (LHC optics): 55 cm F: geometry reduction factor: 0.84

Equation for the luminosity

$$L = \frac{N_b^2 n_b f_{rev} \gamma}{4\pi\varepsilon_n \beta^*} F = \frac{c}{4\pi} \frac{\gamma}{l} N_b^2 n_b \frac{1}{\varepsilon_n \beta^*} F$$

• We will outline some of the luminosity limits

- Beam beam (limit on N_b/e_n)
- Electron cloud (limit on n_b)
- Squeeze (limit on b^{*}e_n)
- Injectors (limit on N_b, n_b, e_n)

THE BEAM-BEAM LIMIT

The **beam-beam** limit (Coulomb)

$$\xi = n_{IP} \frac{r_p}{4\pi} \frac{N_b}{\varepsilon_n} < 0.01?$$

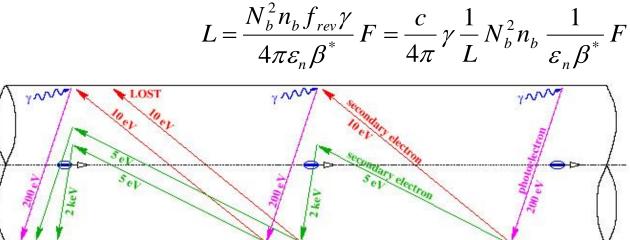
$$N_h$$
 Number of particles per bunch

$$L = \frac{N_b^2 n_b f_{rev} \gamma}{4\pi\varepsilon_n \beta^*} F = \underbrace{\frac{N_b}{\varepsilon_n}}_{N_b} N_b n_b \frac{f_{rev} \gamma}{4\pi\beta^*} F$$

 ε_n transverse size of beam

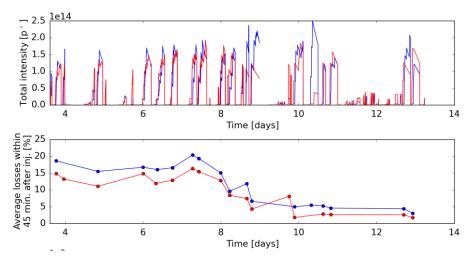
- One cannot put too many particles in a "small space" (brightness)
 - Otherwise the Coulomb interaction seen by a single particle when collides against the other bunch creates instabilities (tune-shift)
- This is an empirical limit, also related to nonlinearities in the lattice
 - LHC has very low nonlinearities → larger limits
 - LHC behaves better than expected: beam-beam up to 0.03 tolerable
 - LHC in 2018 has run with 0.015 beam-beam parameter

		Nominal	Ultimate	2012	2012 MD	2018
N_b		1.15E+11				
ε _n	(m)	3.75E-06	3.75E-06	2.50E-06	1.70E-06	1.80E-06
ξ_{IP}	(adim)	0.0037	0.0055	0.0075	0.0157	0.0074
N _{IP}	(adim)	2	2	2	2	2
٤	(adim)	0.007	0.011	0.015	0.031	0.015



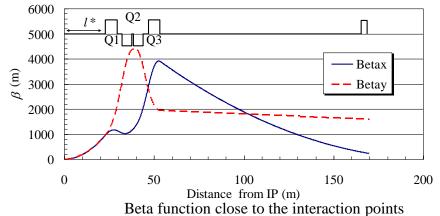
12

THE ELECTRON CLOUD LIMIT


Mechanism of electron cloud formation [F. Ruggiero]

- This is related to the extraction of electrons in the vacuum chamber from the beam
- A critical parameter is the spacing of the bunches: smaller spacing larger electron cloud – threshold effect
 - So this effect pushes for 50 ns w.r.t. 25 ns
- Spacing (length) \leftrightarrow spacing (time) \leftrightarrow number of bunches n_b
 - 7.5 m \leftrightarrow 25 ns \leftrightarrow 3560 free bunches (2808 used)

THE ELECTRON CLOUD LIMIT


- Electron cloud has been observed where expected in RunI during 50 ns intensity ramp up
 - Was cured by scrubbing of surface with intense beam
 - In RunI we operated in a reliable way with 1300 bunches at 50 ns
- RunII worked with 25 ns as baseline
 - Looks non trivial but feasible
 - More sensitive to other effects (see section on spread and strange beasts)
 - 2556 bunches reached instead of the nominal 2808
 - Scrubbing run effective

THE OPTICS LIMIT

- Optics: squeezing the beam
 - Size of the beam in a magnetic lattice
 - Luminosity is inverse prop to ε and β*
- In the free path (no accelerator magnets) around the experiment, the β^* has a nasty dependence with *s* distance to IP

$$\beta(s) = \beta^* + \frac{s^2}{\beta^*} \approx \frac{s^2}{\beta^*}$$

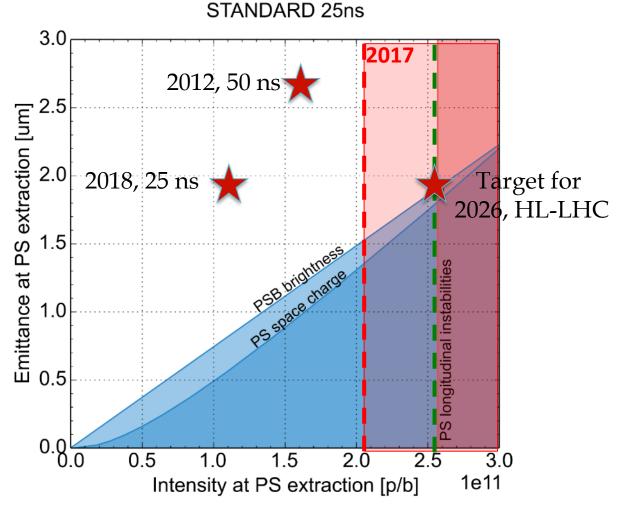
 $L = \frac{N_b^2 n_b f_{rev} \gamma}{4\pi\varepsilon_{\pi}\beta^*} F = \frac{c}{4\pi} \gamma \frac{1}{L} N_b^2 n_b \frac{1}{\varepsilon_{\pi}\beta^*} F$

 $|x(s)| = \sqrt{\frac{\varepsilon\beta(s)}{\gamma}}$

- The limit to the squeeze is the magnet aperture
 - Key word for magnets in HL LHC: not stronger but larger

THE OPTICS LIMIT

- Optics: squeezing the beam
 - Size of the beam in a magnetic lattice


$$L = \frac{N_b^2 n_b f_{rev} \gamma}{4\pi\varepsilon_n \beta^*} F = \frac{c}{4\pi} \gamma \frac{1}{L} N_b^2 n_b \frac{1}{\varepsilon_n \beta^*} F$$

ice $|x(s)| = \sqrt{\frac{\varepsilon\beta(s)}{\gamma_r}}$

- LHC was designed to reach $\beta^* = 55$ cm with 70 mm aperture IR quads
- In RunI, less energy \rightarrow larger beam \rightarrow higher β^*
 - But lower emittance (2.5 instead of 3.75 μm), so we manage to run at 60 cm
- In RunII, we arrived to run at 25 cm

THE INJECTOR LIMIT

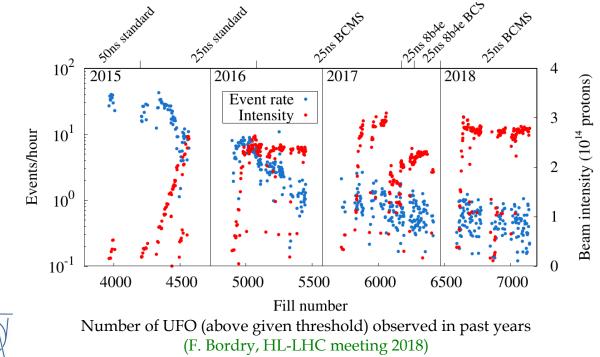
Injectors can provide beams with only a given combination of parameters

Summary of conditions in the runs

• Note: in 2018 we started using levelling to reduce pile up

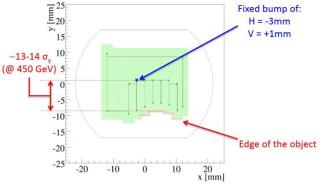
		Nominal	2011		2012		2015		2016		2017		2018	
N _b	(adim)	1.15E+11	1.50E+11	1.70	1.60E+11	1.94	1.15E+11	1.00	1.15E+11	1.00	1.17E+11	1.04	1.10E+11	0.91
ε _n	(m)	3.75E-06	2.40E-06	1.56	2.50E-06	1.50	3.50E-06	1.07	2.20E-06	1.70	2.25E-06	1.67	2.00E-06	1.88
n _b	(adim)	2808	1380	0.49	1380	0.49	2244	0.80	2220	0.79	2556	0.91	2556	0.91
eta^*	(m)	0.55	1.00	0.55	0.60	0.92	0.80	0.69	0.40	1.38	0.40	1.38	0.25	2.20
spacing	(ns)	25	50		50		25		25		25		25	
Е	(TeV)	7.0	3.5	0.50	4.0	0.57	6.5	0.93	6.5	0.93	6.5	0.93	6.5	0.93
X angle	(µrad)	142.5	185		185		185		140		150		150	
F	(adim)	0.840	0.836	1.00	0.748	0.89	0.770	0.92	0.732	0.87	0.712	0.85	0.603	0.72
L	$(cm^{-2} s^{-1})$	1.00E+34	3.6E+33	0.36	6.7E+33	0.67	5.0E+33	0.50	1.5E+34	1.50	1.70E+34	1.70	2.29E+34	2.29
pile up		26	19		36		16		50		49		66	
σ_{z}	(mm)	75.5	90		90		90		75		75		75	
γ	(adim)	7448	3724		4256		6916		6916		6916		6916	
σ^{*}	(mm)	1.66E-02	2.54E-02		1.88E-02		2.01E-02		1.13E-02		1.14E-02		8.50E-03	

CONTENTS


- Where are we?
 - Energy
 - Luminosity
 - Dirty beasts and the menace of spread
- Where are we going?
 - From 13 to 14 TeV (15 ?)
 - Towards 4000 fb⁻¹
 - Towards 35-100 TeV

DIRTY BEASTS

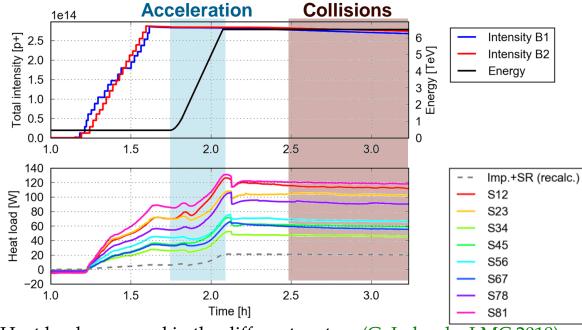
- And the UFO appeared in Geneva ...
 - Particles of dust moved by the beam (electrostatics), rapidly burned by the beam
 - Losses can cause interlocks of beam related to beam loss monitor
 - Very worrying in 2015, but conditioning visible so not an issue today
 - What after the large intervention of LS2 ?



20

DIRTY BEASTS

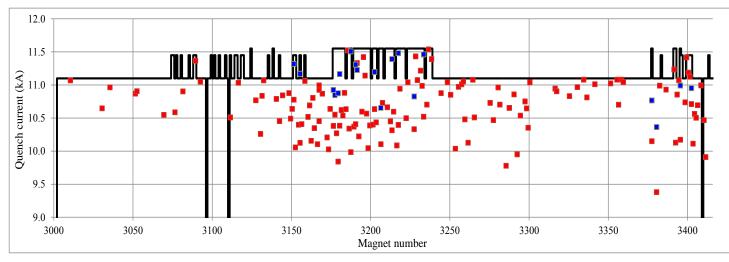
- ULO (2015 and 2016)
 - Unidentified Lying Object in cell 15 right of point 8
 - Provoking UFO and beam losses
 - Frozen object, visible with beam scan, of few mm on the bottom of the vacuum chamber
 - Bypassed by a chicane via orbit correctors


D. Mirarchi, Evian workshop 2015

- 16L2 (2017 and 2018)
 - Significant beam losses in cell 16 left of point 2, affecting operation in 2017 and 2018
 - Air inlet during cool down is the most probable cause
 - Bypassed by changing the pattern of bunches

THE MENACE OF SPREAD

- Spread in arc performance observed in RunII
 - 4 consecutive arcs have a much higher (twice) heat load than the other 4
 - Source is most likely the electron cloud, generated by different surface properties (SEY, impurities?)
 - Not understood
 - The higher load sectors are touching the limit of cryogenics, could affect HL LHC



Heat load measured in the different sectors (G. Iadarola, LMC 2018)

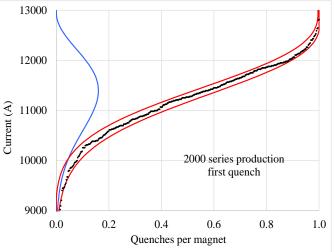
THE MENACE OF SPREAD

- To reach 6.5 TeV, large spread between the three magnet manufacturers
 - Firm1: 5% of quenches
 - Firm2: 25% of quenches
 - Firm3: 70% of quenches
- Note that
 - All magnets made with the same design and procedures provided by CERN
 - Spread of performance is not only between producers, but also during time
 - This behaviour is one of the main enigma of the LHC magnets

Magnets of Firm3 quenching in the LHC tunnel to reach 6.5-6.7 TeV (E. Todesco et al. IEEE Trans Appl Supercond 2017)

23

CONTENTS

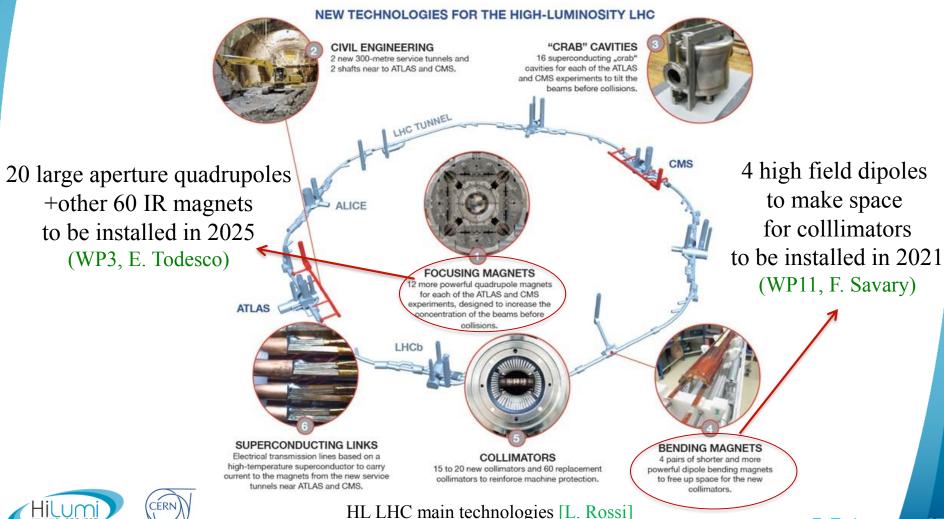

- Where are we?
 - Energy
 - Luminosity
 - Dirty beasts and the menace of spread
- Where are we going?
 - From 13 to 14 TeV (15 ?)
 - Towards 4000 fb⁻¹
 - Towards 35-100 TeV

FROM 13 TO 14 TeV

- During the training to 6.5 TeV, two shorts appeared in the diode box of the dipoles
 - Due to weakness in design of diode insulation
 - Cured by a bold action: pulse of current to burn the short (A. Siemko and team)
 - It worked, but the management decided to go for a global diode consolidation in LS2 (J. M. Jimenez, J. P. Tock et al.)
 - This shall allow to carry on massive campaign of training if needed
- The decision of the management is to run at 7+7 TeV after LS2
 - Order of 500 quenches expected, based on the observation that the quench distribution is not far from a Gaussian

 The training to 7 TeV will also tell us more about the possibility of training at 7.5 TeV (remote hypothesis, but not excluded)

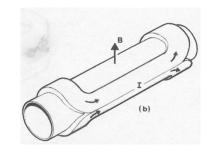
THE 20's: TOWARDS 4000 fb⁻¹


- HL-LHC project (L.Rossi)
 - 10 times more data in the decade 2025-2035

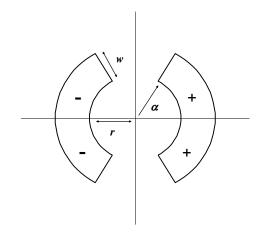
LHC UPGRADE

Upgrade relying on several technological pillars

27

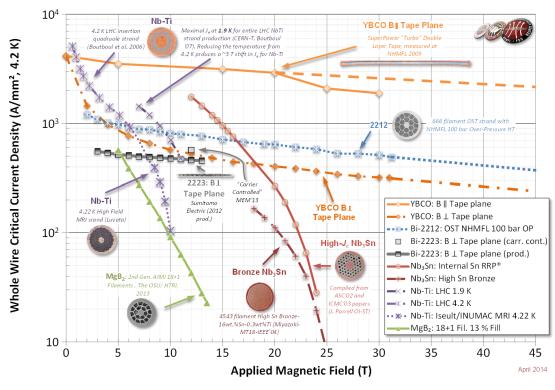

THE 20's: TOWARDS 4000 fb⁻¹

- HL-LHC project (L.Rossi)
 - 10 times more data in the decade 2025-2035
- How increase performance in such a good machine?
 - With 950 MCHF, 12 T magnets, and ten years work
- The path to more data
 - Double beam intensity to 2.2×10¹¹ proton per bunch (together with LIU project)
 - Half the beam size by doubling the magnet aperture around the IR
 - Killing the adverse effects of crossing angle through crab cavities or flat beams
- Plus make use of two essential tools
 - Luminosity levelling (already operational since 2017)
 - Novel optics to correct chromaticity (ATS scheme, S. Fartoukh)
- In terms of magnets, HL LHC shall make use of a technology Nb₃Sn that has the potential of going from 8 to 16 T



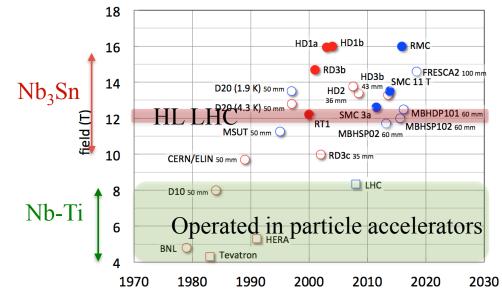
THE SCALE TOWARDS HIGHER FIELDS

- The 80's: 4 T in Tevatron
 - Nb-Ti at 4.2 K, 15 mm coil
- The 90's: 6 T in SSC prototypes
 - Nb-Ti at 4.2 K, 30 mm coil
- The 90's: 8 T in LHC prototypes
 - Nb-Ti at 1.9 K, 30 mm coil
- The 00's: 8 T in LHC
 - Nb-Ti at 1.9 K, 30 mm coil
- The 00's: 10 T in LARP prototypes
 - Nb₃Sn at 1.9 K, 30 mm coil
- The 10's: 12 T in HL-LHC
 - Nb₃Sn at 1.9 K, 35 mm coil
- The 20's: aiming to 16 T in FCC
 - Nb₃Sn at 1.9 K, 50 mm coil


$B[T] \approx 7 \times 10^{-4} j [\text{A/mm}^2] w [\text{mm}]$

SUPERCONDUCTING MATERIALS TOWARDS HIGHER FIELDS

- Superconductivity is a quantistic property that is limited by temperature, magnetic field and current density
 - Usually everybody talks about temperature for HEP the most relevant are current density (compact device) and field (max attainable field)
 - The hidden variable of this plot is the price an essential ingredient

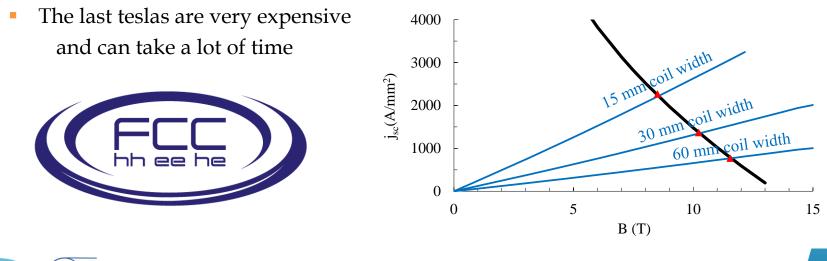


Critical surface of some superconducting materials at 4.5 K (unless specified) (courtesy of P. Lee)

PRESENT ACHIEVEMENTS

- In accelerators:
 - Nb-Ti technology used in several machines, up to 8 T in the LHC
 - Nb3Sn technology to be used in HL-LHC (12 T range), full length prototypes under construction – short model program aiming at 16 T for FCC is ongoing
 - HTS technology being developed to build inserts to boost the field from 16 to 24 T – racetracks and short models providing 3-5 T have been built and tested in standalone configuration

Hall of fame of Nb-Ti and Nb₃Sn accelerator magnets [L. Bottura, MT25]


SUMMARY OF THE TESLA RACE

THE 30's: TOWARDS 30-100 TeV

- For an accelerator, more energy can be obtained through larger size (brute force) or larger field (technological advance)
- Having a magnet in the 14-16 T range, one can envisage two options
 - HE-LHC: replacing the LHC lattice with Nb₃Sn dipoles to double the LHC energy (around 30 TeV)
 - FCC: New tunnel of 100 km, with Nb₃Sn dipoles (around 100 TeV)
- Cost and time are a major point

Critical surface for Nb-Ti: j versus B and magnet loadline

33

CONCLUSIONS

- LHC proves to be a very flexible accelerator, and reached ultimate luminosity at 6.5 TeV
- Plans for 2021-2023
 - Increase the energy to 7+7 TeV
 - Substantial interventions on the LHC, recover the pre-LS2 performance could take time
- Plans for 2026-2035
 - Ten times more data through a double beam intensity, half of beam size, and heavvy use of levelling and new optics
 - This will prove the ability of Nb₃Sn technology of providing 12 T magnets 4 T jump in field for accelerator magnets
- After HL-LHC
 - Making use of Nb₃Sn technology at 16 T to increase energy to 30 TeV (in LHC tunnel) or to 100 TeV (in a new 100 km tunnel)
 - Possibility of boosting up to 20-25 T with HTS (under study)
 - Input of physics is essential ...

