Functional Safety Activities (2) ALBA-CERN workshop

Borja Fernández Adiego BE/ICS

Some examples of Safety Systems

- HTS (high temperature superconducting) winding machine (IEC 62061 standard)
 - Siemens Safety PLC + SINAMICS + Profisafe
 - Safety Evaluation Tool for machine safety (<u>https://www.industry.siemens.com/topics/global/de/safety-integrated/maschinensicherheit/safety-evaluation-tool/seiten/default.aspx</u>)

- Several magnet test benches
 - "SM18" test benches
 - "B311 Switchboard" test bench
 - "FAIR" test bench

• AWAKE experiment (industrial process)

In all of them ICS developed the control system (using UNICOS) and safety system

- New magnet test bench facility in building 311
- Different test benches to **measure the field** of normal conducting **electro-magnets**
- Magnets will be powered with DC or quasi-DC current up to 1000 A
- The current provided by each converters must be multiplexed to the test benches by a dedicated electro-mechanical switches assembly (hereafter named "switchboard")
- LHC P.A. 1 SPS BA LHC P.A. 1 ATLAS SPS BA6

• Project managed by TE/MSC

- 17 Measuring benches
- 7 Power converters
 - 3 COMET
 - 1 Apolo
 - 3 Transtechnik
- Switchboard assembled by the company Boffetti <u>http://www.boffettigroup.com/</u>
- Switchboard main components:
 - ABB Emax circuit-breakers
 - Mersen (FLOHE Foulileret SAS) circular commutators

ABB Emax circuit-breakers

Mersen circular conmutators

Risk analysis

- FMEA (Failure Mode and Effect Analysis)
- High level analysis: focusing on the design
- 4 items were analysed
 - Magnet
 - Interbox
 - Switchboard
 - Power converter

Electrical risk

Need of an **interlock system** to mitigate this risk

Item	Function	Potential Failure Mode	Potential Effect(s) of Failure	Severity (S)	Potential Cause(s) of Failure	Occurrence (O)	Occurrence Current Design(Preventi on)	Detectio n (D)	Current Design Controls (Detection)	Risk Priority Number (RPN)	Recommen ded Action(s)	FMEA unique identifier number
1.3	Switchboard	blade position of switch	open circuit under power	10	switch indicates closed position	3	tests during installation	8	regular switching tests without load	240	installation of a redundant switch	NBS#69
1.1	Magnet	Thermal interlock	Wrong connections	10	mix between thermal (NC) versus water (NO) interlock wrong connectors interlock scheme	5	standard interlock system (CERN OK, External institute NOK)	8	none	400		NBS#39

ICS contribution to the project

- Development of an **control system** which allows the operator **to select the switchboard setup** for the tests
- **Development of a protection** (interlock) **system** to prevent some hazardous events (monitoring the switchboard, the power converters and the bench signals)

Activities:

- 1. Risk analysis: FMEA (signal level of the existing design) + Brainstorming (What if method)
- 2. Definition of the control strategy: **UNICOS** Functional Analysis
- 3. Definition of Safety Functions (IEC 61508)
- 4. Implementation Control system + Safety Instrumented System
- 5. "Proof" of compliance with the requirements (best effort)
- 6. Safety report: including proof test coverage catalogue and recommendations

Risk Analysis (FMEA) + Brainstorming

Item / Function	Potential Failure Mode(s)	Item / Function	Potential Failure Mode(s)	Potential Effect(s) of Failure	S e v	Potential Cause(s)/ Mechanism(s) of Failure	P r o b	Current Design Controls (how can the potential failure be detected?)	D e t	B P N	Recommended Action(s)
TSH01(NC)	No communication	TSH01(NC)	No communication	Safety input card (SIL3) will detect it and move to passivation	3	broken cable	1	PLC will detect it	9	27	
	Fails to open		Fails to open	Safety problem: damage the bench	10	Contact failure	3 (need MTTF)	no redundant information : It seems that the signal is serial chain of all magnet TSH	3	90	SIF checking the temperature of the bench
	Fails to close		Fails to close	No Safety problem	1	Contact failure	3 (need MTTF)	no redundant information : It seems that the signal is serial chain of all magnet TSH	3	9	

- The configuration from the SCADA is not very critical as we have feedback from all switches
- **Powering with two (or more) power converters the same bench will rise a critical situation** (damage to the installation and eventually to the workers)
- All safety functions will act on the power converters

Safety Functions (families)

- 1. Coherence switches: all feedbacks from the switch must be coherent (a.k.a one signal *TRUE* and all the rest *FALSE*)
- 2. Breaker status: Breaker must be closed in order to allow to the PC to provide the power to the bench
- **3.** Bench configuration: never more than 1 PC can power the same bench
- **4. Bench status signals**: all "bench signals" (EMXX, PBXX, FSLXX, TSHXX and ZSLXX) must be "OK" in order to allow to the PC to provide the power to the bench
- 5. Overcurrent protection: The current of COMET#3 PC should be limited.

Remarks:

- SIFs are independent of the test bench selection (SCADA)
- All safety functions will stop the Power Converters (PC_FPAXX and PC_PERMXX)

Safety Instrumented Function definition

- **Risk to mitigate:** Electrical risk (short-circuit) due to wrong Switchboard configuration. Potential power converters damage, magnet damage and human damage.
- Functionality: Each bench should be powered by only 1 Power Converter
- Mode: Low demand operation mode
- Safety Integrity Level: SIL2

Risk evaluation [R]		Probability of the hazardous event						
		1	2	3	4			
	Α	A1	A2	A3	A4			
ntia	В	B1	B2	B3	B4			
ote	С	C1	C2	C3	C4			
P S	D	D1	D2	D3	D4			

SIF must be compliant with:

- SIL2 Hardware Safety Integrity requirements:
 - Architectural constrains
 - Hardware random failures
- SIL2 **Systematic** Safety Integrity requirements: Mechanical Stress, EM interference, Software errors, etc.

SIL4	PFD _{avg} < 10 ⁻⁴	TRR < 10000
SIL3	10 ⁻⁴ < PFD _{avg} < 10 ⁻³	TRR < 1000
SIL2	10 ⁻³ < PFD _{avg} < 10 ⁻²	TRR < 100
SIL1	10 ⁻² < PFD _{avg} < 10 ⁻¹	TRR < 10
SILO	No Safet	у

Risk evaluation table

113 Switchboard signals (including spares)

Implementation of SIF

Source of Information (IEC 61508)

- 1. Site specific (CERN)
 - Power converters team (TE-EPC)
- 2. Industry specific
 - Test bench facilities (e.g. SM18)

- 3. Generic (large number of applications)
 - Boffetti, ABB, Mersen

4. Manufacturer data

- ABB circuit breakers
- Mersen (FLOHE) Switches

Why so important:

- **1.** Hardware Safety Integrity requirements:
 - Hardware random failures (Failure rate, MTTF, etc.)
 - Architectural constrains
 - Route 1 :**SFF** (Safe Failure Fraction)
 - Route 2 : **Feedback** from the users
- 2. Systematic Safety Integrity requirements:
 - Proven in use

Meeting the Safety Integrity requirements

IEC 61508

- 1. Hardware Safety Integrity
 - Quantify the **random hardware failures** for the specific SIL: PFD or PFH calculations.

AND

• Comply with the **architectural constrains** for the specific SIL: Route 1H (SFF and HFT) or Route 2H (field feedback, ...)

2. Systematic Safety Integrity

- Comply with requirements for systematic safety integrity for the specific SIL: Route 1s OR
- Comply with requirements for **Proven in Use** (PIU) for the specific SIL: Route 2s

IEC 61511

- 1. Hardware Safety Integrity
 - Quantify the random hardware failures for the specific SIL: PFD or PFH calculations. AND (
 - Comply with the HFT requirements (IEC 61511)

OR

- Comply with the HFT requirements (IEC 61508)
- 2. Systematic Safety Integrity
 - Comply with Application Program requirements for LVL & FPL AND (
 - Comply with requirements based on Prior Use (IEC 61511)

OR

• Comply with requirements for systematic safety integrity (IEC 61508)

$$PFD = \lambda_D \cdot \frac{T}{2}$$

 $MTTF = 1/\lambda_D$ MTBF = MTTF + MTDF + MTTR

Where:

- λ_D is the (dangerous) failure rate. We consider constant failure rate $\lambda(t) = \lambda$
- *T* is the period of time between the manual tests
- No automatic tests C = 0

$$PFD = \lambda_D \cdot \frac{T}{2}$$

PFD for block 1:

- Information provided by manufacturer (Mersen): λ = 0.9 E-03
- Assumptions:
 - $\lambda = \lambda_D$ (Failure rate = Dangerous failure rate)
 - **C** = **0** (No automatic tests)
 - SIL2
- If PFD₁ = 1 E-03, then T = 0.741 years = 270 days
- If PFD₁ = 1 E-02, then T = 7.41 years

SIL4	PFD _{avg} < 10 ⁻⁴	TRR < 10000
SIL3	10 ⁻⁴ < PFD _{avg} < 10 ⁻³	TRR < 1000
SIL2	10 ⁻³ < PFD _{avg} < 10 ⁻²	TRR < 100
SIL1	10 ⁻² < PFD _{avg} < 10 ⁻¹	TRR < 10
SILO	No Safet	ý

Failure mode	Rate of	MTBF	MTTR	Effects on	Effects on
	occurrence			OCS	LV
	(%)	(hour)	(hour)		
MAIN CIRCUIT					
Mechanical	2,2 E-3	20 E6	3,00	No high voltage	NA
defect				on OCS	
MOTOR					
Mechanical	4,4 E-3	10 E6	1,50	No possibility to	NA
defect				commutate	
INTERLOCKING					
Mechanical	2,2 E-3	20 E6	1,00	No possibility to	NA
defect				commutate	
AUXILIARY					
CONTACTS	\frown				
Auxiliary	0,9 E-3	50 E6	0,50	Signalisation	NA
contacts	\checkmark				
	9,7 E-3	4,5 E6	6,00		

PFD for block 2:

- Information provided by manufacturer (Siemens): SIL3 certified devices
- No significant to reach SIL2 for this SIF

SIL4	PFD _{avg} < 10 ⁻⁴	TRR < 10000
SIL3	10 ⁻⁴ < PFD _{avg} < 10 ⁻³	TRR < 1000
SIL2	10 ⁻³ < PFD _{avg} < 10 ⁻²	TRR < 100
SIL1	$10^{-2} < \text{PFD}_{avg} < 10^{-1}$	TRR < 10
SILO	No Safet	у

 PFD_R

PFD_{FG CPP}

PFD for block 3:

- Safety relay: Information provided by manufacturer (Siemens): SIL3
- Power Converters: No valid information to guarantee SIL
 - Large number of PC installed at CERN (around 2000 PCs)
 - New Function Generator Controller (FGC3)
- Redundant signals
 - Fast Abort (safe signal, redundant architecture)
 - Power Permit
- Redundant Architecture
 - Stop both power converters
 - Possibility to add hardware interlock (recommendation given to SM18 test bench facilities)

SIL4	PFD _{avg} < 10 ⁻⁴	TRR < 10000
SIL3	10 ⁻⁴ < PFD _{avg} < 10 ⁻³	TRR < 1000
SIL2	10 ⁻³ < PFD _{avg} < 10 ⁻²	TRR < 100
SIL1	10 ⁻² < PFD _{avg} < 10 ⁻¹	TRR < 10
SILO	No Safet	у

Architectural constrains

2 options:

• **Route 1**_H: Based on hardware fault tolerance (HFT) and safety failure fraction(SFF)

Route 2_H: HFT and Feedback of users (Boffetti, Mersen and the Power converter team)

Systematic Safety Integrity

- We focus on the software (PLC program) reliability: IEC 61511 verification of application software
- All the SIFs were formally verified using the **PLCverif tool**: <u>https://cern.ch/PLCverif</u>
 - This tool applies model checking to the PLC programs
- During the development of the PLC program, PLCverif found "discrepancies" between the SIFs specification (desired functionality) and the SIFs implementation (PLC program)
- The 5 SIFs are expressed in 94 verification properties. The PLC program has 2¹⁷⁴ ≈ 6*10⁵¹ input combinations. "Impossible" to check all of them with testing

AWAKE (Advanced Wakefield Experiment)

"...an approach to accelerate an electron beam to the TeV energy regime in a single plasma section..."

http://awake.web.cern.ch/awake/

International collaboration:

- Several groups at CERN (TE/VSC, HSE/SEE, BE/ICS)
- Max-Planck-Institut für Physik <u>https://www.mpp.mpg.de/</u>
- WDL <u>http://www.wrightdesign.net/</u>

Risk Analysis (FMEA)

RISK ASSESSMENT

Hazard	Causes	Hazardous Event(s)	Consequences	Control measure(s)	Р	S	R	Action(s)	Further prevention measure(s) required	Further mitigation measure(s) required
Flammable	Accidental contact with oxygen source during system operation	Failure of vapour source structure leading to ingress of air into the vapour source	Injury to personnel due to fire in experimental area Significant damage to local infrastruture due to fire Respiratory damage to personnel due to release of rubidium combustion products	Joints and interconnects following UHV best practice RGA completed during HWC to verify leak rate less than 2 x 10-10mbarls-1 CERN beamline valve interlocks if pressure exceeds 1 x 10-5 mbar isolating vapour source system	1	D	D1	Unacceptable risk: actions are necessary.	SIF2: Secondary protection of density viewports using automatic valves SIF2: Place system into emergency shutdown state if fault (loss of vacuum) detected (<i>calculate safe</i> <i>inlet pressure of argon assuming worst case heating</i>)	SOP: CERN firefighting procedure needed (i.e use of class D fire extinguishers)

Safety Instrumented Function definition

- **Risk to mitigate:** ignition risk due to the contact of rubidium and the air.
- **Functionality**: Isolate the **rubidium** inside the plasma cell by closing the valves behind the viewports once a leak of the plasma cell is detected
- Mode: Low demand operation mode
- Safety Integrity Level: SIL2

Risk evaluation [R]		Probability of the hazardous event						
		1	2	3	4			
	Α	A1	A2	A3	A4			
rity	В	B1	B2	B3	B4			
ote	С	C1	C2	C3	C4			
d s	D	D1	D2	D3	D4			

SIF must be compliant with:

- SIL2 Hardware Safety Integrity requirements:
 - Architectural constrains
 - Hardware random failures
- SIL2 **Systematic** Safety Integrity requirements: Mechanical Stress, EM interference, Software errors, etc.

SIL4	PFD _{avg} < 10 ⁻⁴	TRR < 10000
SIL3	10 ⁻⁴ < PFD _{avg} < 10 ⁻³	TRR < 1000
SIL2	10 ⁻³ < PFD _{avg} < 10 ⁻²	TRR < 100
SIL1	10 ⁻² < PFD _{avg} < 10 ⁻¹	TRR < 10
SILO	No Safet	Ŷ

Risk evaluation table

AWAKE SIF architecture

UNICOS + Distributed Safety library

$$PFD = \lambda_D \cdot \frac{T}{2}$$

 $MTTF = 1/\lambda_D$ MTBF = MTTF + MTDF + MTTR

Where:

- λ_D is the (dangerous) failure rate. We consider constant failure rate $\lambda(t) = \lambda$
- *T* is the period of time between the manual tests
- No automatic tests C = 0

$$PFD_1 = \frac{\lambda_D^2 * T^2}{3} + \beta \frac{\lambda_D * T}{2}$$

PFD for block 1:

- Information provided by manufacturer (Mersen): *MTTF* = 156 years
- Assumptions:
 - $\lambda = \lambda_D$ (Failure rate = Dangerous failure rate)
 - **C** = **0** (No automatic tests)
 - B = 25%
 - SIL2
 - T = 4 weeks
- PFD₁ = 6.15 E-05

SIL4	PFD _{avg} < 10 ⁻⁴	TRR < 10000
SIL3	10 ⁻⁴ < PFD _{avg} < 10 ⁻³	TRR < 1000
SIL2	10 ⁻³ < PFD _{avg} < 10 ⁻²	TRR < 100
SIL1	10 ⁻² < PFD _{avg} < 10 ⁻¹	TRR < 10
SILO	No Safet	ý

PFD for block 2:

- Information provided by manufacturer (Siemens): SIL3 certified devices
- No significant to reach SIL2 for this SIF

SIL4	PFD _{avg} < 10 ⁻⁴	TRR < 10000
SIL3	10 ⁻⁴ < PFD _{avg} < 10 ⁻³	TRR < 1000
SIL2	10 ⁻³ < PFD _{avg} < 10 ⁻²	TRR < 100
SIL1	$10^{-2} < \text{PFD}_{avg} < 10^{-1}$	TRR < 10
SILO	No Safet	у

 $\lambda_{D_{valve}} = PFD_3/(2*T)$

PFD for block 3:

- Information provided by manufacturer: 50000 cycles until the first service
- No safety relevant information

SIL4	PFD _{avg} < 10 ⁻⁴	TRR < 10000
SIL3	10 ⁻⁴ < PFD _{avg} < 10 ⁻³	TRR < 1000
SIL2	10 ⁻³ < PFD _{avg} < 10 ⁻²	TRR < 100
SIL1	10 ⁻² < PFD _{avg} < 10 ⁻¹	TRR < 10
SILO	No Safet	у

 Table 3: Valve SIL 2 PFD Boundaries

PFD ₃	PFD _{valve}	λ_D	MTTF
10^{-2}	PFD ₃ /4=0.0025	6.518*10 ⁻²	15.34
10^{-3}	PFD ₃ /4=0.00025	6.518*10 ⁻³	154

Architectural constrains

2 options:

• **Route** 1_H: Based on hardware fault tolerance (HFT) and safety failure fraction(SFF)

Route 2_H: HFT and Feedback of users

SFF > 60% Otherwise need redundancy

Systematic Safety Integrity

- We focus on the software (PLC program) reliability: IEC 61511 verification of application software
- The SIF was formally verified using the PLCverif tool: <u>https://cern.ch/PLCverif</u>
 - This tool applies model checking to the PLC programs

FAIR test bench

Building 180 is hosting the test bench facility for all magnets from the **FAIR project at GSI**.

The functionality of this installation is very similar to the already existing test bench facility in the SM18 building at CERN.

The installation is composed by 3 different test benches where up to 9 magnets can be tested at the same time. Six kind of tests can be performed in this installation

Risk Analysis (FMEA) provided by HSE

Electrical risk

R	isk Assessment											
10) Hazards	Causes	Hazardous Events	Consequences	Control measures (Preventive and Protective)	р	People	Environm	Property	Operatio nal	R	Risk Level
	Electricity	Stored Energy in Magnet	Change of connection to load can leave stored energy in magnet	People - Electrocution Property - Overheating	Preventive: Risk considered in design, Hardware Interlock	2	в	A	в	В	B2	Moderate risk: actions are recommended to reduce the risk.

Cryogenic risk

Ris	sk Assessment											
		Causes	Hazardous Events	Consequences	Control measures				5			
ID	Hazards				(Preventive and Protective)	2	People	Environm ent	Property	Operatio nal	к	KISK LEVEI
	Cryogenic fluid	Commissioning:Operation: Exhaust of GN2 precooler, located near filling area of N2 tanks	Exhaust gas in area of operators/drivers around N2 precooler exhaust	People - cyrogenic fluid	Preventive - Add external piping to B180 to vent precooler exhaust higher up	2	в	A	A	A	B2	Moderate risk: actions are recommended to reduce the risk.

Risk Analysis (FMEA) provided by HSE

Conclusions:

- Cryogenic safety:
 - "Other control measures": Cryogenics control system, including the pressure and temperature regulation, heaters control, etc.
 - SIF: in case of losing the cryogenic conditions, stop the PCs. Risk B2 -> SIL1 (?) -> Low demand (?) (P = 2).
 Severity to people B = low
- Electrical and electromagnetic safety:
 - SIF: protection of people from direct contact. Risk D1 -> SIL2 (?) -> Low demand (?) (P = 1) Severity to people D = high
 - SIF: protection from Quench. Risk B4 -> SIL2 (?) -> High demand (?) (P = 4) Severity to people B = low
- Mechanical safety:
 - No SIFs needed.
- Ergonomic:
 - No SIFs needed.
- Non ionizing radiation:
 - No SIFs needed.

Interlock specification

- Provide by the client (TE/MSC group at CERN)
- Contains functionality and safety conditions
- PLC program is based on this specification (complex logic)

А	В	C D	к	L	м	N	0
			BENCH 1				
			TYPE OF TEST TO SELECT				
		Signal name	Power PCx (x= 1 to 9)	HV at warm	Continuity	HV at cold	QPS signal compensation at colu
- Ō	Par.	MIN_Q_CURx (*9 PCs)	A XXX				
		31 PC8_STATUS	1 if x=8, NA if x≠8	NA	NA	NA	NA
		32 PC9_STATUS	1 if x=9, NA if x≠9	NA	NA	NA	NA
		33 PCs_MCB_STATUS	NA	NA	NA	NA	NA
		34 MANUAL_STOP	1	NA	NA	NA	NA
		35 AUE_PC_ALL	1	1	1	1	1
		36 TB1_ELEC_DOOR_OPENED	0	0	0	0	0
	(0)	37 TB1_CRYO_DOOR_OPENED	0	0	0	0	0
Щ	Ĕ	38 TB2_ELEC_DOOR_OPENED	NA	NA	NA	NA	NA
x	2	39 TB2_CRYO_DOOR_OPENED	NA	NA	NA	NA	NA
ш	Ź	40 TB3_ELEC_DOOR_OPENED	NA	NA	NĂ	NA	NA
Î		41 TB3_CRYO_DOOR_OPENED	NA	NA	NA	NA	NA
0	I ₹	42 TB1_ELEC_DOOR_CLOSED	1	1	1	1	1
ш	5	43 TB1_CRY0_DOOR_CLOSED	1	1	1	1	1
m	Ĭ	44 TB2_ELEC_DOOR_CLOSED	NA	NA	NA	NA	NA
0		45 TB2_CRY0_DOOR_CLOSED	NA	NA	NA	NA	NA
H	-4	46 TB3_ELEC_DOOR_CLOSED	NA	NA	NA	NA	NA
n n		47 TB3_CRY0_DOOR_CLOSED	NA	NA	NA	NA	NA
۳		48 TB1_TOWER_ELEC_FREE	1	1	1	1	1
<u> </u>		49 TB2_TOWER_ELEC_FREE	NA	NA	NA	NA	NA
₹.		50 TB3_TOWER_ELEC_FREE	NA	NA	NA	NA	NA
-		51 TB1_TOWER_CRY0_FREE	1	1	1	1	1
5		52 TB2_TOWER_CRYO_FREE	NA	NA	NA	NA	NA
đ		53 TB3_TOWER_CRYO_FREE	NA	NA	NA	NA	NA
Z		54 COM1_TB1	1 if x=1, NA if x≠1	0	0	0	0
		55 COM1_TB2	0 if x=1, NA if x≠1	0 or 1	0 or 1	0 or 1	0 or 1
		56 COM1_TB3	0 if x=1, NA if x≠1	1 or 0	1 or 0	1 or 0	1 or 0
		57 COM2_TB1	1 if x=2, NA if x≠2	0	0	0	0
		58 COM2_182	0 If x=2, NA If x≠2	0 or 1	0 or 1	0 or 1	U or 1
		59 COM2_183	0 if x=2, NA if x≠2	1 or 0	1 or 0	1 or 0	1 OF U
		60 COM3_1B1	1 If X=3, NA If X≠3	0	0	0	0
		61 COM3_182	0 If x=3, NA If x≠3	0 0F 1	0 00 1	0 0 1	0 00 1
		62 COM3_103	0 II X=3, NA II X≠3	1010	1010	1010	1010
			Difused NA if year	0 == 1	0 == 1	0 == 1	0.551
		RE COM4_TB2	0 II X=4, NA II X≠4	1 or 0	1 or 0	1 or 0	1 0 0
		66 COM4_103	1 if y=5 NA if y=5	1010	1010	1010	1010
		67 COM5_TB2	0 if y=5 NA if y=5	0 or 1	0 or 1	0 or 1	0 or 1
		68 COM5 TB3	0 if x=5, NA if x=5	1 or 0	1 or 0	1 or 0	1 or 0
		69 COM6 TB1	1 if y=6 NA if y=6	0	0	1010	1010
		70 COM6 TB2	0 if x=6, NA if x=6	0 or 1	0 or 1	0 or 1	0 or 1
		71 COM6 TB3	0 if x=6, NA if x+6	1 or 0	1 or 0	1 or 0	1 or 0
		72 COM7 TB1	1 if x=7 NA if x=7	0	0	0	
		73 COM7 TB2	0 if x=7, NA if x+7	0 or 1	0 or 1	0 or 1	0 or 1
		74 COM7 TB3	0 if x=7 NA if x=7	1 or 0	1 or 0	1 or 0	1 or 0
		75 COM8 TB1	1 if x=8 NA if x=8	0	0	0	
		76 COM8 TB2	0 if x=8 NA if x=8	0 or 1	0 or 1	0 or 1	0 or 1
		77 COM8 TB3	0 if x=8 NA if x=8	1 or 0	1 or 0	1 or 0	1 or 0
		78 COM9 TB1	1 if x=9, NA if x+9	0	0	0	0

Risk Analysis (FMEA) + Brainstorming

Item / Function	Potential Failure Mode(s)	Item / Function	Potential Failure Mode(s)	Potential Effect(s) of Failure	S e v	Potential Cause(s)/ Mechanism(s) of Failure	P r o b	Current Design Controls (how can the potential failure be detected?)	D e t	B P N	Recommended Action(s)
TSH01(NC)	No communication	TSH01(NC)	No communication	Safety input card (SIL3) will detect it and move to passivation	3	broken cable	1	PLC will detect it	9	27	
	Fails to open		Fails to open	Safety problem: damage the bench	10	Contact failure	3 (need MTTF)	no redundant information : It seems that the signal is serial chain of all magnet TSH	3	90	SIF checking the temperature of the bench
	Fails to close		Fails to close	No Safety problem	1	Contact failure	3 (need MTTF)	no redundant information : It seems that the signal is serial chain of all magnet TSH	3	9	

Why?

- Identification of safety critical signals to mitigate the risks
- Sometimes (very few), we can select the instrumentation
- We can take decisions about the **architecture** (e.g. redundancy) and identify weak points of our SIS.

FAIR SIFs

- **16 SIFs** were extracted to mitigate the cryogenic and electrical risks:
- Here an example for electrical risk:

SIF5: shutdown the PCs if the coherence of the commutator feedbacks is not respected (one signal TRUE and all the rest FALSE).

- Functionality: if (NOT ((COM1_TB1=1 AND COM1_TB2=0 AND COM1_TB3=0) OR (COM1_TB1=0 AND COM1_TB2=1 AND COM1_TB3=0) OR (COM1_TB1=0 AND COM1_TB2=0 AND COM1_TB3=1))) then (PC1_PERMIT=0 AND FCL1_CLOSE_CMD=0)
- Safety Integrity Level: SIL2
- Mode: Low demand

Repeat for the other eight power converters.