Functional Safety Activities (2)
 ALBA - CERN workshop

Borja Fernández Adiego BE/ICS

Some examples of Safety Systems

- HTS (high temperature superconducting) winding machine (IEC 62061 standard)
- Siemens Safety PLC + SINAMICS + Profisafe
- Safety Evaluation Tool for machine safety (https://www.industry.siemens.com/topics/global/de/safety-integrated/maschinensicherheit/safety-evaluation-tool/seiten/default.aspx)
- Several magnet test benches
- "SM18" test benches
- "B311 Switchboard" test bench
- "FAIR" test bench

- AWAKE experiment (industrial process)

In all of them ICS developed the control system (using UNICOS) and safety system

Switchboard installation

- New magnet test bench facility in building 311
- Different test benches to measure the field of normal conducting electro-magnets
- Magnets will be powered with DC or quasi-DC current up to 1000 A
- The current provided by each converters must be multiplexed to the test benches by a dedicated electro-mechanical switches assembly (hereafter named "switchboard")
- Project managed by TE/MSC

Switchboard installation

Switchboard installation

- 17 Measuring benches
- 7 Power converters
- 3 COMET
- 1 Apolo
- 3 Transtechnik
- Switchboard assembled by the company Boffetti http://www.boffettigroup.com/
- Switchboard main components:
- ABB Emax circuit-breakers
- Mersen (FLOHE Foulileret SAS) circular commutators

CONVERTERS		
Type	Max. current [A]	Max. voltage [V]
COMET \#1	750	120
COMET \#2	500	120
APOLO	400 (rms), 900 (peak)	450
TANSTECHNIK \#1	600	40
TRANSTECHNIK \#2	600	40
TRANSTECHNIK \#3	600	40
COMET \#3	500	120

Switchboard installation

ABB Emax circuit-breakers

Mersen circular conmutators

Risk analysis

- FMEA (Failure Mode and Effect Analysis)
- High level analysis: focusing on the design
- 4 items were analysed
- Magnet

Electrical risk

Need of an interlock system to mitigate

this risk

- Interbox
- Switchboard
- Power converter

Item	Function	Potential Failure Mode	Potential Effect(s) of Failure	Severity (S)	Potential Cause(s) of Failure	Occurrence (0)	Occurrence Current Design(Preventi on)	Detectio n (D)	Current Design Controls (Detection)	Risk Priority Number (RPN)	Recommen ded Action(s)	FMEA unique identifier number
1.3	Switchboard	blade position switch	open circuit under power	10	switch indicates closed position	3	tests during installation	8	regular switching tests without load	240	```installation of a redundant switch```	NBS\#69
1.1	Magnet	Thermal interlock	Wrong connections	10	mix between thermal (NC) versus water (NO) interlock wrong connectors interlock scheme	5	standard interlock system (CERN OK, External institute NOK)	8	none	400		NBS\#39

ICS contribution to the project

- Development of an control system which allows the operator to select the switchboard setup for the tests
- Development of a protection (interlock) system to prevent some hazardous events (monitoring the switchboard, the power converters and the bench signals)

Activities:

1. Risk analysis: FMEA (signal level of the existing design) + Brainstorming (What if method)
2. Definition of the control strategy: UNICOS Functional Analysis
3. Definition of Safety Functions (IEC 61508)
4. Implementation Control system + Safety Instrumented System
5. "Proof" of compliance with the requirements (best effort)
6. Safety report: including proof test coverage catalogue and recommendations

Risk Analysis (FMEA) + Brainstorming

Hem F Function	Potential Failure Mode(s)	Item F Function	Potential Failure Mode(s)	Potential Effect(s) of Failure	$\begin{aligned} & \mathbf{s} \\ & \mathbf{e} \\ & \mathbf{y} \end{aligned}$	Potential Cause(s)t Mechanism(s) of Failure	$\begin{aligned} & \text { P } \\ & \text { b } \\ & \text { b } \end{aligned}$	Current Design Controls (how can the potential failure be detected?]	D	$\begin{aligned} & \mathbf{R} \\ & \mathbf{P} \\ & \mathbf{N} \end{aligned}$	$\begin{aligned} & \text { Recommended } \\ & \text { Action(s) } \end{aligned}$
TSH01(NC)	No communication	TSH01(NC)	No communication	Safety input card (SIL3) will detect it and move to passivation	3	broken cable	1	PLC will detect it	9	27	
	Fails to open		Fails to open	Safety problem: damage the bench	10	Contact failure	3 (need MTTF)	no redundant information : It seems that the signal is serial chain of all magnet TSH	3	90	SIF checking the temperature of the bench
	Fails to close		Fails to close	No Safety problem	1	Contact failure	3 (need MTTF)	no redundant information : It seems that the signal is serial chain of all magnet TSH	3	9	

- The configuration from the SCADA is not very critical as we have feedback from all switches
- Powering with two (or more) power converters the same bench will rise a critical situation (damage to the installation and eventually to the workers)
- All safety functions will act on the power converters

Safety Functions (families)

1. Coherence switches: all feedbacks from the switch must be coherent (a.k.a one signal TRUE and all the rest FALSE)
2. Breaker status: Breaker must be closed in order to allow to the $P C$ to provide the power to the bench
3. Bench configuration: never more than 1 PC can power the same bench
4. Bench status signals: all "bench signals" (EMXX, PBXX, FSLXX, TSHXX and ZSLXX) must be "OK" in order to allow to the PC to provide the power to the bench
5. Overcurrent protection: The current of COMET\#3 PC should be limited.

Remarks:

- SIFs are independent of the test bench selection (SCADA)
- All safety functions will stop the Power Converters (PC_FPAXX and PC_PERMXX)

Safety Instrumented Function definition

- Risk to mitigate: Electrical risk (short-circuit) due to wrong Switchboard configuration. Potential power converters damage, magnet damage and human damage.
- Functionality: Each bench should be powered by only 1 Power Converter
- Mode: Low demand operation mode
- Safety Integrity Level: SIL2

SIF must be compliant with:

Risk evaluation [R]		Probability of the hazardous event			
		1	2	3	4
	A	A1	A2	A3	A4
	B	B1	B2	B3	B4
	C	C1	C2	C3	C4
	D	D1	D2	D3	D4

- SIL2 Hardware Safety Integrity requirements:
- Architectural constrains
- Hardware random failures
- SIL2 Systematic Safety Integrity requirements: Mechanical Stress, EM interference, Software errors, etc.

SIL4	PFD $_{\text {avg }}<10^{-4}$	TRR $<\mathbf{1 0 0 0 0}$
SIL3	$10^{-4}<$ PFD $_{\text {avg }}<10^{-3}$	TRR <1000
SIL2	$10^{-3}<$ PFD $_{\text {avg }}<10^{-2}$	TRR <100
SIL1	$10^{-2}<$ PFD $_{\text {avg }}<10^{-1}$	TRR <10
SIL0	No Safety	

Switchboard SIS architecture

Implementation of SIF

Source of Information (IEC 61508)

1. Site specific (CERN)

- Power converters team (TE-EPC)

2. Industry specific

- Test bench facilities (e.g. SM18)

3. Generic (large number of applications)

- Boffetti, ABB, Mersen

4. Manufacturer data

- ABB - circuit breakers
- Mersen (FLOHE) - Switches

Why so important:

1. Hardware Safety Integrity requirements:

- Hardware random failures (Failure rate, MTTF, etc.)
- Architectural constrains
- Route 1 :SFF (Safe Failure Fraction)
- Route 2 : Feedback from the users

2. Systematic Safety Integrity requirements:

- Proven in use

Meeting the Safety Integrity requirements

IEC 61508

1. Hardware Safety Integrity

- Quantify the random hardware failures for the specific SIL: PFD or PFH calculations.

AND

- Comply with the architectural constrains for the specific SIL: Route 1H (SFF and HFT) or Route 2H (field feedback, ...)

2. Systematic Safety Integrity

- Comply with requirements for systematic safety integrity for the specific SIL: Route 1s OR
- Comply with requirements for Proven in Use (PIU) for the specific SIL: Route 2 s

1. Hardware Safety Integrity

- Quantify the random hardware failures for the specific SIL: PFD or PFH calculations. AND (
- Comply with the HFT requirements (IEC 61511)

OR

- Comply with the HFT requirements (IEC 61508)

)

2. Systematic Safety Integrity

- Comply with Application Program requirements for LVL \& FPL AND (
- Comply with requirements based on Prior Use (IEC 61511)

OR

- Comply with requirements for systematic safety integrity (IEC 61508)

Hardware random failures

$$
P F D=\lambda_{D} \cdot \frac{T}{2}
$$

$$
\begin{gathered}
M T T F=1 / \lambda_{D} \\
M T B F=M T T F+M T D F+M T T R
\end{gathered}
$$

Where:

- $\lambda_{\boldsymbol{D}}$ is the (dangerous) failure rate. We consider constant failure rate $\lambda(\mathrm{t})=\boldsymbol{\lambda}$
- \boldsymbol{T} is the period of time between the manual tests
- No automatic tests $\mathrm{C}=0$

Hardware random failures

$$
P F D=\lambda_{D} \cdot \frac{T}{2}
$$

Failure mode	Rate of occurrence	MTBF	MTTR	$\begin{aligned} & \text { Effects on } \\ & \text { OCS } \\ & \hline \end{aligned}$	Effects on LV
	(\%)	(hour)	(hour)		
MAIN CIRCUIT					
Mechanical defect	2,2 E-3	20 E6	3,00	No high voltage on OCS	NA
MOTOR					
Mechanical defect	4,4 E-3	10 E6	1,50	No possibility to commutate	NA
INTERLOCKING					
Mechanical defect	2,2 E-3	20 E6	1,00	No possibility to commutate	NA
AUXILIARY CONTACTS					
Auxiliary contacts	$0,9 \mathrm{E}-3$	50 E 6	0,50	Signalisation	NA
	9,7 E-3	4,5 E6	6,00		

SIL4	PFD $_{\text {avg }}<10^{-4}$	TRR <10000
SIL3	$10^{-4}<\mathrm{PFD}_{\text {avg }}<10^{-3}$	TRR <1000
SIL2	$10^{-3}<\mathrm{PFD}_{\text {avg }}<10^{-2}$	TRR <100
SIL1	$10^{-2}<\mathrm{PFD}_{\text {avg }}<10^{-1}$	TRR <10
SIL0	No Safety	

Hardware random failures

$$
P F D=\lambda_{D} \cdot \frac{T}{2}
$$

PFD for block 2:

- Information provided by manufacturer (Siemens): SIL3 certified devices
- No significant to reach SIL2 for this SIF

SIL4	PFD $_{\text {avg }}<10^{-4}$	TRR <10000
SIL3	$10^{-4}<\mathrm{PFD}_{\text {avg }}<10^{-3}$	TRR <1000
SIL2	$10^{-3}<\mathrm{PFD}_{\text {avg }}<10^{-2}$	TRR <100
SIL1	$10^{-2}<\mathrm{PFD}_{\text {avg }}<10^{-1}$	TRR <10
SIL0	No Safety	

Hardware random failures

$$
P F D=\lambda_{D} \cdot \frac{T}{2}
$$

PFD for block 3:

- Safety relay: Information provided by manufacturer (Siemens): SIL3
- Power Converters: No valid information to guarantee SIL
- Large number of PC installed at CERN (around 2000 PCs)
- New Function Generator Controller (FGC3)
- Redundant signals
- Fast Abort (safe signal, redundant architecture)

SIL4	PFD $_{\text {avg }}<10^{-4}$	TRR <10000
SIL3	$10^{-4}<\mathrm{PFD}_{\text {avg }}<10^{-3}$	TRR <1000
SIL2	$10^{-3}<\mathrm{PFD}_{\text {avg }}<10^{-2}$	TRR <100
SIL1	$10^{-2}<\mathrm{PFD}_{\text {avg }}<10^{-1}$	TRR <10
SIL0	No Safety	

- Power Permit
- Redundant Architecture
- Stop both power converters
- Possibility to add hardware interlock (recommendation given to SM18 test bench facilities)

Architectural constrains

2 options:

- Route $\mathbf{1}_{\mathbf{H}}$: Based on hardware fault tolerance (HFT) and safety failure fraction(SFF)

	Type A			Type B		
$\operatorname{SFF}^{\mathrm{HFT}}$	0	1	2	0	1	2
<60\%	SlL	SIL2	SIL 3	N/A		SIL 2
60\% 590%		SIL 3	SIL 4	SIL 1		SIL 3
90\% 599%	SIL3	SIL 4	SIL 4) 14
$\geq 99 \%$	SIL 3	SIL 4	SIL 4			SIL 4

- Route $\mathbf{2}_{\boldsymbol{H}}$: HFT and Feedback of users (Boffetti, Mersen and the Power converter team)

Systematic Safety Integrity

- We focus on the software (PLC program) reliability: IEC 61511 verification of application software
- All the SIFs were formally verified using the PLCverif tool: https://cern.ch/PLCverif
- This tool applies model checking to the PLC programs
- During the development of the PLC program, PLCverif found "discrepancies" between the SIFs specification (desired functionality) and the SIFs implementation (PLC program)
- The 5 SIFs are expressed in 94 verification properties. The PLC program has $\mathbf{2}^{174} \approx \mathbf{6 * 1 0}^{\mathbf{5 1}}$ input combinations. "Impossible" to check all of them with testing

AWAKE (Advanced Wakefield Experiment)

"...an approach to accelerate an electron beam to the TeV energy regime in a single plasma section..."
http://awake.web.cern.ch/awake/

International collaboration:

- Several groups at CERN (TE/VSC, HSE/SEE, BE/ICS)
- Max-Planck-Institut für Physik https://www.mpp.mpg.de/
- WDL
http://www.wrightdesign.net/

Risk Analysis (FMEA)

Safety Instrumented Function definition

- Risk to mitigate: ignition risk due to the contact of rubidium and the air.
- Functionality: Isolate the rubidium inside the plasma cell by closing the valves behind the viewports once a leak of the plasma cell is detected
- Mode: Low demand operation mode
- Safety Integrity Level: SIL2

SIF must be compliant with:

Risk evaluation [R]		Probability of the hazardous event			
		1	2	3	4
	A	A1	A2	A3	A4
	B	B1	B2	B3	B4
	C	C1	C2	C3	C4
	D	D1	D2	D3	D4

- SIL2 Hardware Safety Integrity requirements:
- Architectural constrains
- Hardware random failures
- SIL2 Systematic Safety Integrity requirements: Mechanical Stress, EM interference, Software errors, etc.

SIL4	PFD $_{\text {avg }}<10^{-4}$	TRR $<\mathbf{1 0 0 0 0}$
SIL3	$10^{-4}<$ PFD $_{\text {avg }}<10^{-3}$	TRR <1000
SIL2	$10^{-3}<$ PFD $_{\text {avg }}<10^{-2}$	TRR <100
SIL1	$10^{-2}<$ PFD $_{\text {avg }}<10^{-1}$	TRR <10
SIL0	No Safety	

AWAKE SIF architecture

UNICOS + Distributed Safety library

Hardware random failures

$$
P F D=\lambda_{D} \cdot \frac{T}{2}
$$

$$
\begin{gathered}
M T T F=1 / \lambda_{D} \\
M T B F=M T T F+M T D F+M T T R
\end{gathered}
$$

Where:

- $\lambda_{\boldsymbol{D}}$ is the (dangerous) failure rate. We consider constant failure rate $\lambda(\mathrm{t})=\lambda$
- \boldsymbol{T} is the period of time between the manual tests
- No automatic tests $\mathrm{C}=0$

Hardware random failures

$$
P F D_{1}=\frac{\lambda_{D}^{2} * T^{2}}{3}+\beta \frac{\lambda_{D} * T}{2}
$$

PFD for block 1:

- Information provided by manufacturer (Mersen): MTTF = $\mathbf{1 5 6}$ years
- Assumptions:
- $\lambda=\lambda_{D}$ (Failure rate $=$ Dangerous failure rate)
- $\mathbf{C}=\mathbf{0}$ (No automatic tests)
- $B=25 \%$
- SIL2
- $\mathrm{T}=4$ weeks

SIL4	PFD $_{\text {avg }}<10^{-4}$	TRR $<\mathbf{1 0 0 0 0}$
SIL3	$10^{-4}<\mathrm{PFD}_{\text {avg }}<10^{-3}$	TRR <1000
SIL2	$10^{-3}<$ PFD $_{\text {avg }}<10^{-2}$	TRR <100
SIL1	$10^{-2}<$ PFD $_{\text {avg }}<10^{-1}$	TRR <10
SIL0	No Safety	

- $\mathrm{PFD}_{1}=6.15 \mathrm{E}-05$

Hardware random failures

$$
P F D=\lambda_{D} \cdot \frac{T}{2}
$$

PFD for block 2:

- Information provided by manufacturer (Siemens): SIL3 certified devices
- No significant to reach SIL2 for this SIF

SIL4	PFD $_{\text {avg }}<10^{-4}$	TRR <10000
SIL3	$10^{-4}<\mathrm{PFD}_{\text {avg }}<10^{-3}$	TRR <1000
SIL2	$10^{-3}<\mathrm{PFD}_{\text {avg }}<10^{-2}$	TRR <100
SIL1	$10^{-2}<\mathrm{PFD}_{\text {avg }}<10^{-1}$	TRR <10
SIL0	No Safety	

Hardware random failures

$$
\lambda_{D_{\text {valve }}}=P F D_{3} /(2 * T)
$$

PFD for block 3:

- Information provided by manufacturer: $\mathbf{5 0 0 0 0}$ cycles until the first service
- No safety relevant information

SIL4	PFD $_{\text {avg }}<10^{-4}$	TRR <10000
SIL3	$10^{-4}<$ PFD $_{\text {avg }}<10^{-3}$	TRR <1000
SIL2	$10^{-3}<$ PFD $_{\text {avg }}<10^{-2}$	TRR <100
SIL1	$10^{-2}<$ PFD $_{\text {avg }}<10^{-1}$	TRR <10
SIL0	No Safety	

Table 3: Valve SIL 2 PFD Boundaries

$\mathbf{P F D}_{3}$	$\mathbf{P F D}_{\text {valve }}$	λ_{D}	MTTF
10^{-2}	$\mathrm{PFD}_{3} / 4=0.0025$	$6.518 * 10^{-2}$	15.34
10^{-3}	$\mathrm{PFD}_{3} / 4=0.00025$	$6.518 * 10^{-3}$	154

Architectural constrains

2 options:

- Route $\mathbf{1}_{\mathbf{H}}$: Based on hardware fault tolerance (HFT) and safety failure fraction(SFF)

Type B: complex HFT=1
Unknown SFF

Constraint:

SFF > 60\%

3
Solenoid valves Type A: simple HFT=0
Unknown SFF

Otherwise need redundancy

Systematic Safety Integrity

- We focus on the software (PLC program) reliability: IEC 61511 verification of application software
- The SIF was formally verified using the PLCverif tool: https://cern.ch/PLCverif
- This tool applies model checking to the PLC programs

1 TPG300
SC1 compliant
Design (EMI, env. stress, online monitoring)
Separated and redundant TPG300
SC1 -> SC2

2
S7-315F (fail safe PLC)
SIL 3 compliant for systematic fail.
(IEC 61511) Application software must be SIL2
Low variability Language (ladder) Verification by formal methods*

3
Solenoid valves
Basic information from supplier
The four valves must have an SC2 to claim the required SIL 2

FAIR test bench

Building 180 is hosting the test bench facility for all magnets from the FAIR project at GSI.

The functionality of this installation is very similar to the already existing test bench facility in the
 SM18 building at CERN.

The installation is composed by 3 different test benches where up to 9 magnets can be tested at the same time. Six kind of tests can be performed in this installation

Risk Analysis (FMEA) provided by HSE

Electrical risk

Risk Assessment												
10	Hazards	Causes	Hazardous Events	Consequences	Control measures (Preventive and Protective)	p	${ }^{5}$				R	Risk level
							People	Environm ent	Property	$\begin{gathered} \text { Operatio } \\ \text { nal } \\ \hline \end{gathered}$		
	Electricity	Stored Energy in Magnet	Change of connection to load can leave stored energy in magnet	People-Electrocution Property-Overheating	Preventive: Risk considered in design, Hardware Interlock	2	B	A	B	B	B2	Moderate risk: actions are recommended to reduce the risk.

Cryogenic risk

Risk Assessment												
10	Hazards	Causes	Hazardous Events	Consequences	Control measures (Preventive and Protective)	P	5				R	Risk Level
							People	$\begin{array}{\|c\|} \hline \begin{array}{c} \text { Environm } \\ \text { ent } \end{array} \\ \hline \end{array}$	Property	Operatio		
	Cryogenic fluid	of GN2 precooler, located near filling area of N 2 tanks	Exhaust gas in area of operatorsidrivers around N 2 precooler exhaust	People - cyrogenic fluid	Preventive - Add external piping to 1800 to vent precooler exhaust higher up	2	B	A	A	A	B2	Moderate risk: actions are recommended to reduce the risk

Risk Analysis (FMEA) provided by HSE

Conclusions:

- Cryogenic safety:
- "Other control measures": Cryogenics control system, including the pressure and temperature regulation, heaters control, etc.
- SIF: in case of losing the cryogenic conditions, stop the PCs. Risk B2 -> SIL1 (?) -> Low demand (?) (P=2). Severity to people B = low
- Electrical and electromagnetic safety:
- SIF: protection of people from direct contact. Risk D1 -> SIL2 (?) -> Low demand (?) (P = 1) Severity to people D = high
- SIF: protection from Quench. Risk B4 -> SIL2 (?) -> High demand (?) ($P=4$) Severity to people B = low
- Mechanical safety:
- No SIFs needed.
- Ergonomic:
- No SIFs needed.
- Non ionizing radiation:
- No SIFs needed.

Interlock specification

- Provide by the client (TE/MSC group at CERN)
- Contains functionality and safety conditions
- PLC program is based on this specification (complex logic)

Risk Analysis (FMEA) + Brainstorming

Item F Function	Potential Failure Mode(s)	Item I Function	Potential Failure Mode(s)	Potential Effect(s) of Failure	$\begin{aligned} & \mathbf{s} \\ & \mathbf{e} \\ & \mathbf{v} \end{aligned}$	Potential Cause(s) Mechanism(s) of Failure	$\begin{aligned} & \mathbf{P} \\ & \mathbf{1} \\ & \mathbf{o} \\ & \mathbf{b} \end{aligned}$	Current Design Controls (how can the potential failure be detected?]	$\begin{aligned} & \mathrm{o} \\ & \text { e } \\ & \mathbf{t} \end{aligned}$	$\begin{aligned} & \mathbf{R} \\ & \mathbf{P} \\ & \mathbf{N} \end{aligned}$	$\begin{aligned} & \text { Recommended } \\ & \text { Action }(s) \end{aligned}$
TSH01(NC)	No communication	TSH01(NC)	No communication	Safety input card (SIL3) will detect it and move to passivation	3	broken cable	1	PLC will detect it	9	27	
	Fails to open		Fails to open	Safety problem: damage the bench	10	Contact failure	3 (need MTTF)	no redundant information : It seems that the signal is serial chain of all magnet TSH	3	90	SIF checking the temperature of the bench
	Fails to close		Fails to close	No Safety problem	1	Contact failure	3 (need MTTF)	no redundant information : It seems that the signal is serial chain of all magnet TSH	3	9	

Why?

- Identification of safety critical signals to mitigate the risks
- Sometimes (very few), we can select the instrumentation
- We can take decisions about the architecture (e.g. redundancy) and identify weak points of our SIS.

FAIR SIS architecture

FAIR SIFs

- 16 SIFs were extracted to mitigate the cryogenic and electrical risks:
- Here an example for electrical risk:

SIF5: shutdown the PCs if the coherence of the commutator feedbacks is not respected (one signal TRUE and all the rest FALSE).

- Functionality: if (NOT ((COM1_TB1=1 AND COM1_TB2=0 AND COM1_TB3=0) OR (COM1_TB1=0 AND COM1_TB2=1 AND COM1_TB3=0) OR (COM1_TB1=0 AND COM1_TB2=0 AND COM1_TB3=1))) then (PC1_PERMIT=0 AND FCL1_CLOSE_CMD=0)
- Safety Integrity Level: SIL2
- Mode: Low demand

Repeat for the other eight power converters.

