
Vectorized general-purpose
utilities: how to handle?

= gathering opinions and ideas for a more general discussion =

The context

• Library-driven vectorization more and more popular, proliferating into

several packages

• ROOT, VecGeom, GeantV now, soon maybe many more + user code

• Community still in doubt of what to adopt (Vc, VecCore, …) while waiting

for more general solutions (C++20)

• VecCore has the advantage of being type-less (typedef to the desired backend)

• Other benefits (e.g. supporting scalar+vector kernels, not discussed here)

• Every package developing their own solutions for vector-aware utils but

also ancillary data structures

• Math, basic algorithms, RNG, physics types/operastions, SOA types, …

• The seed for work duplication and/or spaghetti dependencies

The problems
• We’ve started developing algorithms depending on such utilities

• Physics vectorization in GeantV needs vectorized/scalar RNG, in future Lorentz vectors and boosts, rotations,
vector algebra, …

• RNG hosted temporary in a branch of VecCore, cannot merge to master since the place might not be
appropriate
• Result: the vectorized physics branch not yet mergeable to GeantV master, making further developments harder.

• While including optimized Log/Exp headers originated from VDT, but from Geant4, we realized
they were under LGPL license
• How do we handle code imported and optimized from third-party libraries and having a different license?
• Should we handle externals at this level?

• This is just the tip of the iceberg…
• Utility code (“kernels”) migrated to VecCore may have have interfaces based on custom containers, e.g.

vecgeom::Vector3D/SOA3D
• Scalar vs. vector implementation support: these utils will need a compatible scalar version as well

• Sounds familiar? What should we do?
• Doing good-old in-house cooking and push the problem to future generations???

Discussion

• A common namespace (e.g. VUtils::)?

• Which git repo?

• Header-only?

• Externals?

• Content? Granularity (many small libs against a bigger one)?

• Basic vector types & containers?

• Scalar & vector support?

• Precision-related issues (approximations, float vs. double)

• Evolution (migration towards C++20), maintenance

• …

