
The LArPix Data Acquisition
System: Present and Future

Sam Kohn
UC Berkeley / Lawrence Berkeley National Lab
12 June 2018

1

LArPix: LAr pixel readout ASIC

2LArPix Data Acquisition System | Sam Kohn | 12 June 2018

DAQ hardware

Chip and data board

Digitization

Cold (in LAr)

Signal routing to warm

Designed by D. Dwyer

3

DAQ control board

Warm (room temperature)

FPGA to convert signal to standard format

Raspberry Pi to interpret signal and store data

Raspberry Pi controlled via SSH over WiFi (crucial

for isolating system from laptop/desktop GND)

Designed by S. Kohn

LArPix Data Acquisition System | Sam Kohn | 12 June 2018

Prototype-scale DAQ

2m ribbon cable (50 conductors)

Chip and data board

Analog signal arrives through cavity in PCB

6-bit ADC (i.e. LArPix ASIC)

Digital data IO via daisy chain of 28 chips (256 max)

One data wire in, one data wire out of cryostat

Data sent along ribbon cable carrying supply

voltages,CLK, & reset lines

4LArPix Data Acquisition System | Sam Kohn | 12 June 2018

Prototype-scale DAQ

DAQ control
board

5

Analog power regulators

Digital power regulators

Enable header pins

Monitor header pins

FPGA converts from 54-bit
packet @ 5 MHz to Serial
UART @ 1 MHz

Level translator
from 3V (FPGA) to
current VDDPST

Serial connection to
optional external control
computer

Raspberry Pi Zero
onboard control
computer

WiFi module for SSH connection to
control Raspberry Pi LArPix UART data path

Serial UART data path

Ribbon cable from
cryostat

LArPix Data Acquisition System | Sam Kohn | 12 June 2018

Prototype-scale DAQ

More on DAQ control board

6LArPix Data Acquisition System | Sam Kohn | 12 June 2018

Raspberry Pi Zero

Raspbian Stretch OS version 2017-11-29 (versions are named by release date)

Runs the LArPix DAQ software

Saves data to the onboard SD card for retrieval via WiFi or by reading directly off the SD card

Built-in Tx and Rx pins for communicating via Serial UART

FPGA

Glorified buffer: LArPix side @ 5 MHz, Raspberry Pi side @ 1 MHz

Converts format from 54-bit UART to/from 8-bit UART (bi-directional)

Does not do any data interpretation; just blindly copies bits and bytes

If Raspberry Pi Zero were fast enough, the FPGA would not be necessary

Signal path

7

By IngenieroLoco - Own work, CC BY-SA 4.0,
https://commons.wikimedia.org/w/index.php?curid=53165575

Analog pulse

LArPix ADC & FIFO

LArPix 54-bit data packet
(based on UART), 5 MHz clock

10-byte serial UART
(8N0-type), 1 MHz
clock / 1 Mbaud

FPGA firmware

Electrons in LAr & pixel pad

810 ×

LArPix
amplifier

LArPix Data Acquisition System | Sam Kohn | 12 June 2018

Prototype-scale DAQ

DAQ Software: larpix-control

Python library for DAQ and configuration of LArPix ASICs

Completely decoupled from physics software like numpy, ROOT, art, LArSoft, etc.

Trivial to install on Raspberry Pi Zero (1 optional git clone + 1 pip install)

Takes up very little disk space (<50MB)

Saves data in custom binary format (conversion scripts available to ROOT & HDF5)

Interactive & scripted usage supported

Caveat: was not designed to be a full-featured DAQ system. Just enough to get LArPix working!

8

GitHub: https://github.com/samkohn/larpix-control
Docs: http://larpix-control.readthedocs.io

LArPix Data Acquisition System | Sam Kohn | 12 June 2018

Prototype-scale DAQ

https://github.com/samkohn/larpix-control
http://larpix-control.readthedocs.io

LArPix DAQ block diagram

9LArPix Data Acquisition System | Sam Kohn | 12 June 2018

Prototype-scale DAQ

Minimal example

import larpix.larpix as larpix

controller = larpix.Controller() # auto-detect serial port address
chip = larpix.Chip(0, 0) # (chip_id, daisy_chain)
controller.chips.append(chip) # give the controller control over the chip
chip.config.load('physics.json') # load physics run mode configuration in software
controller.write_configuration(chip) # send configuration packets to LArPix ASIC
controller.run(10, 'trial data run') # listen for packets for 10 seconds
print(controller.reads[0]) # print out the packets from the zero-th data run

[Data | Chip: 0 | Channel: 0 | Timestamp: 0 | ADC data: 0 | FIFO Half: False | FIFO Full: False | Parity: 0 (valid: False)]
[Data | Chip: 0 | Channel: 0 | Timestamp: 1000 | ADC data: 2 | FIFO Half: False | FIFO Full: False | Parity: 0 (valid: True)]
[Data | Chip: 0 | Channel: 0 | Timestamp: 2000 | ADC data: 4 | FIFO Half: False | FIFO Full: False | Parity: 0 (valid: True)]
[Data | Chip: 0 | Channel: 0 | Timestamp: 3000 | ADC data: 6 | FIFO Half: False | FIFO Full: False | Parity: 0 (valid: True)]

10LArPix Data Acquisition System | Sam Kohn | 12 June 2018

Prototype-scale DAQ

Developer features: configurations & packets

Knows about chip configuration register names & possible values

>>> chip.config.global_threshold = 120 # good
>>> chip.config.global_threshold = 256 # ValueError: global_threshold out of bounds

Knows about packet types and packet structure

>>> packet.packet_type = Packet.CONFIG_WRITE_PACKET
>>> packet.register_data = 100
[Config write | Chip: 0 | Register: 0 | Value: 100 | Parity: 0 (valid: False)]
>>> packet.assign_parity()
[Config write | Chip: 0 | Register: 0 | Value: 100 | Parity: 1 (valid: True)]
>>> packet.bytes()
b'\x02\x00\x90\x01\x00\x00 ' # note space (b' ' == b'\x20') includes nonzero parity bit

11LArPix Data Acquisition System | Sam Kohn | 12 June 2018

Prototype-scale DAQ

Developer features: data io

Interface for communications implemented for Mac and Linux systems

Mac uses pylibFTDI and a USB-serial cable

Linux (laptop) uses built-in driver + pySerial and a USB-serial cable

Linux (Raspberry Pi) uses pySerial to drive onboard Tx/Rx pins

serial = SerialPort(port='/dev/ttyUSB0', baudrate=1000000, timeout=0.1) # initialize
read_bytes = serial.read(nbytes) # read maximum of <nbytes> arriving within <timeout>
serial.write(b'\x05\x23') # write bytes

12LArPix Data Acquisition System | Sam Kohn | 12 June 2018

Prototype-scale DAQ

Operator features

Controller object interfaces with the DAQ software base

Create and configure Chip objects representing individual ASICs

Read and write configurations from/to ASICs; read data and test packets from ASICs

Examine received packets

Automatically saves every byte sent and received through the communications interface in a custom data

format with extension .dat

Each bytestream is stored along with a log message, timestamp, and some other metadata

Integrated module allows for reading and writing .dat data files, including parsing back into larpix-control

data objects to manipulate in Python

13LArPix Data Acquisition System | Sam Kohn | 12 June 2018

Prototype-scale DAQ

Functionality and reliability

Hardware and software described here have been used during every LArPix data run so far

At LBNL

Demonstrated potential for low-noise operation (low thresholds)

Noise contribution from DAQ system is tolerable

At Bern

Demonstrated long(ish)-term reliability

Uninterrupted operation for 5(ish) days in wide variety of operational modes

No data lost to crashes or bugs

14LArPix Data Acquisition System | Sam Kohn | 12 June 2018

Prototype-scale DAQ

Upgrade plans

15LArPix Data Acquisition System | Sam Kohn | 12 June 2018

Overview of LArPix DAQ plans

Target: ArgonCube 2x2 Demonstrator

~6m2 readout area ⇒ almost 106 channels ⇒ ~30,000 ASICs ⇒ >100 I/O daisy chains

Sounds complicated? This is what LArPix is designed for!

Will require upgrades to DAQ system to gracefully handle 1000 more ASICs

Higher data rates

More than one I/O daisy chain

More files / more complex files / larger files

Higher power draw (not technically part of DAQ but current DAQ board also supplies power)

16LArPix Data Acquisition System | Sam Kohn | 12 June 2018

Hardware needs

100 I/O chains is a little more complicated than 1

Routing the additional lines out of the cryostat and onto DAQ control board

Interfacing with the DAQ computer

Currently using FPGA, but only can accommodate 20 I/O chains

DAQ computer must be able to handle ~1000x data rate; is Raspberry Pi Zero fast enough?

Ensuring all I/O chains are synchronized: likely will require hardware-level design; software may be

enough

Power consumption (again, not technically DAQ but let's put it here): won't be able to run on AA

batteries 17LArPix Data Acquisition System | Sam Kohn | 12 June 2018

Software needs

Multi–I/O chain control and data handling

Data synchronization between I/O chains

File format

File creation sequence / data logging / preventing

data loss

New I/O interface to support hardware upgrade

to the current FPGA functionality

18LArPix Data Acquisition System | Sam Kohn | 12 June 2018

Automate run sequences, configurations and

calibrations

Improve user interface to handle more complex

routines with more ASICs

May require development of low-level (C or C++)

library with Python bindings (only if Python is too

slow) (I add this possibility with great reluctance)

Conclusions

LArPix DAQ system works very well for what it was designed for: a small-scale prototype

Upgrades will be necessary to accommodate higher data rates, etc. from a larger apparatus (ArgonCube)

Upgrades seem (mostly) straightforward; no showstoppers here

19LArPix Data Acquisition System | Sam Kohn | 12 June 2018

Thank You!

