

b UNIVERSITÄT BERN

AEC

ALBERT EINSTEIN CENTER FOR FUNDAMENTAL PHYSICS

Light Readout for Neutron Tagging in DUNE Near-Detector

Patrick Koller

Motivation for n-Tagging

Neutrino energy reconstruction (calorimetric method):

$$E_{\nu,reco} = \underbrace{E_{\mu}}_{leptonic} + \underbrace{\sum_{i=p,\pi^{\pm}}}_{hadronic} \underbrace{E_{i}}_{E_{i}} + \underbrace{\sum_{i=\pi^{0},e,\gamma}}_{peutrons} \underbrace{E_{i}}_{peutrons} + \underbrace{\sum_{i=\pi^{0},e,\gamma}}_{peutrons}$$

neutrons not visible in traditional LAr TPCs

Interaction modes which produce neutrons are dominant in DUNE

Hadronic showers can fluctuate to neutrons → detached energy deposits (up to 10s MeV)

Slow vs. Fast Neutrons

Slow Neutrons [O(keV)]:

- cross several TPCs during thermalization (blue fraction)
- LAr has negative neutron-scatter resonance at ~50 keV (red fraction)

→ vertex association impossible!

Fast Neutrons [O(MeV)]:

- can interact with an atomic nucleus
- mainly recoiling Argon nuclei and protons

→ these particles are visible in LAr!

Properties of Recoiling Particles

- Clear energy-separation between recoiling Argon nuclei and protons
- Signatures in pixel-readout:
 - Argon nuclei only single blips
 - → difficult
 - Protons deposit 30 MeV/cm
 - → short tracks

→ focus on recoiling protons

Recoiling Protons

- → start to see tracks from recoiling protons at neutron energies > 50 MeV
- → directional information

- → no correlation between angle and neutron energy
- → no point-back / no energy reconstruction
- → only option: <u>n-tagging with protons</u>

Track-Pileup Simulation

- Full spill simulation in ArgonBox (GEANT4 LAr simulation by Dan Dwyer)
- 4 x 5 ArgonCube modules
- Module dimensions: 1m x 3.5m x 1m
- TPC dimensions: 0.5m x 3m x 1m
- Additional LAr volume to emulate rock interactions (mainly muons):
 - 5m upstream,
 - 2m at the sides,
 - 1.5m above/below the detector
- At 1MW: ~70 interactions per spill (~9 in active volume)

made with Paraview

energy deposits from proton recoils: red, everything else: blue ($E_{th,tracks} = 10 \text{ MeV}$)

Proton-Track Pileup Results

spill multiplicity of recoiling protons > 10 MeV

~15 recoil proton tracks per spill, mostly in other TPC than nu-interaction

Neutron ↔ Neutrino Association

- Spill length: 10 us, Spill frequency: ~1 Hz
- Average drift time at 1 kV/cm: ~100 us
- ArCLight pulse resolution: ~6 ns

→ use prompt light from protons and neutrino interaction vertex to associate tagged neutrons with neutrino-interactions

ArCLight – Spatial Resolution

- Pileup → need spatial information from light readout together with timing information
- What is the distance from a recoiling proton to any activity above 0.1 MeV from other interactions?
 - → with a spacial resolution of ~30 cm possible to separate proton tracks from other activities
 - → Can we do this with ArCLight?

ArCLight – Spatial Resolution

- Pileup → need spatial information from light readout together with timing information
- What is the distance from a recoiling proton to any activity above 0.1 MeV from other interactions?
 - → with a spacial resolution of ~30 cm possible to separate proton tracks from other activities
 - → Can we do this with ArCLight?

ArCLight – Spatial Resolution

- ArCLight modules line the inner fieldcage
- Stacked vertically in horizontal strips
- How many modules at each side do we need to achieve a spatial resolution of ~30 cm?
 - → simulate isotropically distributed photon emission from random recombination points
 - → calculate time uncertainty from residuals
 - $(\rightarrow$ use pulse shape of ArCLight signal (TAC) to increase timing resolution)

ArCLight – Required Dimensions

$$\sigma_t = \sqrt{\sum_{i=1}^{n} \frac{\left(t_{meas}^i - t_{center}\right)^2}{n}}$$

and $\sigma_{pos} = \sigma_t \cdot c_{LAr}$

Conclusions and Outlook

- Neutron induced proton recoil is the best indicator to flag events with misreconstructed neutrino energy
- Pixel readout can resolve proton tracks > 10 MeV
- Light readout can handle event multiplicity with time from prompt light
- Light readout with good timing (~ 1ns) provides necessary spatial resolution to separate proton recoils from other activities

Next:

- ArCLight intensity study
- GEANT4 simulation for light propagation in ArgonCube

Event Display – Track Energy Threshold

Event Display – Pileup Studies

Event Display – Single Modules/TPCs

What is seen by a single module / TPC?

Showing only the module of interest and color defined by TPC number:

→ allows to see the content of single TPCs

Backup - Event Display

Tree converter:

ArgonBox raw files → Event Display format

Each entry in the Event Display format represents a track containing the information shown here →

Event Display commands:

- python event_display.py ArCube*.rootoptions:
- h: help
 a: show 360° orbit animation
 c: set coloring style (any variable in tree)
 m: module number (default: 0 = all modules)
 spill number in the tree (1, 2, ...)
 t: kinetic energy threshold for tracks (GeV)

```
spillID
                # ID of the spill
                                                       [%d]
                # ID of the event
                                                       [%d]
eventID
trackID
                # ID of the track
                                                       [%d]
                # number of TPC containing nu vtx
                                                        [%d]
vtx mod
                                                               (1 - 40)
                # x-position of nu vtx
                                                       [cm]
vtx x
                # y-position of nu vtx
                                                       [cm]
vtx_y
                # z-position of nu vtx
vtx z
                                                       [cm]
                # time of nu vtx
vtx t
                                                       [ns]
nu_pid
                # PDG PID-code of nu
                                                       [%d]
                # kinetic energy of nu
                                                       [GeV]
nu ekin
tid
               # track ID
                                                       [%d]
bid
                # PDG PID-code of the track
                                                       [%d]
                # tid of the parent track
                                                       [%d]
parid
ekin
                # initial kinetic energy of the track
                                                       [GeV]
recoil
                # flag for recoiling protons
                                                        [%d]
                                                               (0 or 1)
                # number of energy deposits
                                                       [%d]
nq
                # number of TPC containing dq
                                                       [%d]
                                                               (1 - 40)
moda
                # deposited energy
                                                       [MeV]
dq
                # x-position of energy deposit
                                                       [cm]
px
                # y-position of energy deposit
                                                       [cm]
yq
                # z-position of energy deposit
                                                       [cm]
zq
                # time of energy deposit
                                                       [ns]
tq
```

Backup – Track Length

Backup – Neutron Energy Reconstruction

Backup – Proton Pileup Plots

Backup – Track Pileup Plots

Backup – Charge Position Reconstruction

