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Motivation



Magnetized e− − e+ vacuum pressure

• In paper [H. Perez Rojas and E.Rodriguez Querts,International Journal of Modern Physics A Vol.
21, No. 18 (2006)], we calculated the energy-momentum tensor for vacuum in a strong magnetic
field B and found the arising of a negative pressure orthogonal it which acts at each point with
rotational symmetry around any straight line parallel to B.

• It was found that for B ≪ Bc (where Bc = m2c3/e~ ∼ 4.41× 1013 G) the perpendicular pressure

can be written as P⊥ ≈ −
αB4

120π2B2
c

, and for fields B ∼ 4.5 × 105 G one obtain the pressure

P⊥ ∼ −1.35× 10−9dyn cm−2, which may be larger than Casimir pressure. For instance for a
distance between plates d = 0.1cm, it gives PC ∼ −10−14dyn cm−2.

• Along B the pressure it is three times smaller in modulus and is positive P‖ ≈
αB4

360π2B2
c

, leading to

P‖ ≃ 4.6× 10−10dyn cm−2.



• The negative pressure is understood since the quantity corresponding to the classical orbit radius in
the quantum case r0 =

√

~c/eB decreases with increasing B. The spread of the charged particle

wave function in the plane orthogonal to B contains a factor e−ξ2 , with ξ = (x1 + x0)/r0, where
x0 is the x coordinate of the orbit’s centre. For large B the wave function becomes a peaked curve
proportional to δ(x1 + x0), and the wave function amplitude in the perpendicular plane is confined
to a region of area ∼ r20 = ~c/eB, whereas the particles move freely in the direction parallel to B.
That behaviour is valid for virtual particles, and it leads to quantum vacuum to become unable to
transmit momentum in the plane orthogonal to the field.

• We conclude that the pressure exerted on a body by magnetized quantum vacuum stretches it
along the field and contracts perpendicularly to it. This effect is the analog of an electron-positron
gas. The stretching-squeezing effect obviously increases with increasing B and we understand
it as due to its interaction with the virtual electron positron quanta of vacuum. We may state
that magnetized quantum vacuum would drain momentum orthogonal to the external field to any
incoming particle.



Photon propagation and withdraw of momentum orthogonal to B

The withdraw of momentum orthogonal to the
magnetic field is easily seen from the disper-
sion equation for a photon propagating in mag-
netized vacuum.
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Figure 1: Dispersion Eq. for the second mode
(z1 = k2

‖
− ω2, z2 = k2⊥)

• In the previously considered limit B ≪ Bc,

ωi2
− k2‖ = k2⊥

(

1−
Ciαb2

45π

)

, b = B/Bc,

(1)
Ci = 7, 4 for i = 2, 3, corresponding respec-
tively to photon plane polarization along and
orthogonal to B.

• The last expression is the dispersion equa-
tion in presence of the magnetic field for an
incoming photon which far from the magne-
tized region, satisfies the usual light cone
equation ω2

0 = k2
‖
+ k2⊥.

• In other words, the effect of the magnetic
field is to decrease the incoming trans-
verse momentum k⊥ to a value k′⊥ =

(1 − Ciαb2/45π)k⊥ < k⊥, and in conse-
quence, the initial photon squared energy
(frequency) is also decreased.



Photon propagation and withdraw of momentum orthogonal to B

• If the photon moves perpendicular to B,

k‖ = 0, and ω2′ = k2′⊥ . (2)

• Interestingly, if it is reflected perpendicularly by a half-silvered mirror, keeping its plane polarization,
its dispersion equation is the light cone one ω′ = k′⊥.

• We have, by calling ∆ωi = ωi′ − ωi

∆ωi = −
Ciαb2

90π
ωi (3)

• Assuming B ∼ 4.5× 105 G, we get for i = 2, ∆ωi ∼ −10−20ωi.

The pendant task is to design an appropriate experiment to detect this effect.
We consider that interferometry could be used successfully to test it.



B ∼ Bc, ω ≃ 2m, k‖ < ω:

z1 = (k · B)2/B2 − ω2 = k2

‖ − ω2,

z2 = (B×k)2/B2 = k2

⊥, z1 + z2 = kµk
µ = k2,
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The dispersion equation for the second mode (having
plane polarization parallel to B ) may be written

z1 + z2 =
2αeBme−z2/2eB

√
z1 + 4m2

. (4)

This Eq. is valid in a neighborhood of z1 . −4m2.

• Its limit for k → 0 is ω 6= 0. Actually, it describes a
massive vector boson particle closely related to the
electron-positron pair (see below).

• One can estimate its behavior very near z1 =
−4m2, by assuming z1 = −4m2 + ǫ and z2 =
4m2 − ǫ, where ǫ is a small quantity. One can ob-
tain the solution approximately as

(z1+4m2)3/2 = 2αeBme−z2/2eB , from which,

ω2 =
√

k2

‖
+ 4m2 − (2αeBme−z2/eB)2/3.

(5)

• Thus, the transverse momentum of the original
photon (z2 ∼ 2m) is trapped by the magnetized
medium, the resulting quasi-particle being deviated
to move along the field as a longitudinally polarized
vector boson of mass

m0 ≃
√

4m2 − m2(2αbe−2/b)2/3 (6)

• Notice that from the dispersion equation we ob-
serve that it and its solutions) become complex for
z1 < −4m2, or equivalently ω2 > k2 + 4m2.



• We shall assume that the Coulomb potential among virtual is pairs negligibly small due to screen-
ing as compared to the pair interaction with the external magnetic field through the pair magnetic
moment µ = e~/mc. If we deal with the two-particle Green function, it is expected to get a bound
state problem of a system with zero net charge, but a nonzero magnetic moment. We assume phe-
nomenologically what is expected from such a system in its ground state, with mass around 2m and
total spin S = 1. Its components are Sz = 1, 0,−1, the ground state being ψe(

1
2
,− 1

2
)ψp(

1
2
, 1
2
),

which contributes with a positive magnetic moment µ = e
m

, chiral non-invariant (electron L and
positron R), and correspond to the projection Sz = 0 interacting with the external field B. We take
the coupled pair mass m0 = 2m for simplicity. Due to the coupling with the external field B the
effective mass of the coupled pair is expected to be

m′
0 = m0

√

1−B/2Bc < 2m. (7)

• Thus, for B ≃ 2Bc the photon energy required for pair creation is decreased, and we assume
bounded virtual pairs from vacuum as having effective mass m0 in the region of transparency
close to the threshold. We conclude that similarly to the modification of the photon spectrum in the
magnetized region due to the photon interaction with virtual e± pairs, the latter may couple leading
to a neutral virtual vector boson having a coupling with B through its magnetic moment. This
leads to an effective mass m′(B) which decreases much faster with B than in the photon case.
This means to reduce the threshold frequencies from the gamma region to the very low frequency
region. The spectrum of the bound pair system we assume to be

E =
√

k2
‖
+ 4m2 − 2mµB (8)



Bosonized vacuum and ferromagnetic quantum vacuum phase transition

• We shall assume that e± virtual pairs of opposite spin couple leading to bound states (a sort of
virtual positronium, or neutral Cooper pairs), and we take them as described as said above, by a
neutral vector boson with nonzero magnetic moment µ = eB/mc. As pointed out in [G. Quintero
Angulo, A. Perez Martı́nez, H. Perez Rojas, Phys. Rev. C 96, 045810 (2017)] this instability is
avoided in a magnetized neutral vector boson gas by self-magnetization at field intensities lower
than the critical field 2Bc [ M. Chaichian, S. Masood, C. Montonen, A. Perez Martinez, H. Perez
Rojas, Phys. Rev. Lett. 84, 5261 (2000)].

• Magnetized vacuum may decay at fields of order 2Bc, since its effective mass is 4m2−2mµBc ≃ 0.
The quantum vacuum would become unstable at such field intensities and conditions for self-
magnetization of vacuum (and matter plus vacuum) can be found to prevent the instability. A
true ferromagnetic phase transition occurs for quantum vacuum. We use the virtual vector boson
propagator term with S = 0 as D−1 = [k2

‖
+ k24 + 4m2 − 2eBc]. After a Wick rotation leading to

−ω2 → k24 and z21 →

√

k23 + k24 . We shall write

Ω =
1

4π2

∫ e

0

de′

e′

∫

dk4dk3
2B

k2
‖
+ k24 + 4m2 − 2e′Bc

(9)

=
1

2π

∫ ∞

0

dy

y2
[e−(4m2−2eB)y

− e−4m2y ]

=
eB

π

∫ ∞

0

dx

x2
e−(2Bc/B)x[ex − x− 1]

where in the last line we made the change of variables x = 2eBy and regularized the divergence.



The magnetization is

M = −
Ω

B
+
eBc

2πB

∫ ∞

0

dx

x
e−(2Bc/B)x[ex − x− 1] (10)

The magnetization diverges as B → Bc The vacuum pressures in this case are p3 = −Ω,
p⊥ = −Ω−BM, so that

p⊥ = −
eBc

2π

∫ ∞

0

dx

x
e−(2Bc/B)x[ex − x− 1], (11)

Thus, the transverse pressure is a negative quantity which diverges for B > 2Bc. The divergence of
Ω suggests the occurrence of the phase transition from paramagnetic to ferromagnetic vacuum.
The drain of momentum orthogonal to the magnetic field done by vacuum, if verified experimentally
by the shift of frequency, would give a basis in support of the suggested phase transition at very large
fields of order 2Bc and high frequencies. Thinking on its application as a model for astrophysical jets,
notice that extremely large magnetic fields confined around the jet axis may be surrounded by matter
showing very small field intensities, if the original fields are generated by helicoidal huge currents. The
problem is equivalent to the field created by a solenoid. The large magnetic fields inside the ”coil”
induce vacuum (or vacuum plus electrically charged particles) to produce negative pressures which
suck matter around it which in turn, by describing helicoidal paths, increase the central field up to reach
a self-magnetization regime, leading a process propagating linearly.
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