

studying the universe's highest energy particles

# Physics and astrophysics with the Pierre Auger Observatory

Rogerio Menezes de Almeida, for the Pierre Auger Collaboration
Fluminense Federal University

STARS / SMFSN 2019 - La Habana

# Cosmic rays and open questions



• (aproximately) power law spectrum: 10 orders of magnitude in E and 32 in flux!

#### **Persistent questions**

- ✓ What are their sources?
- ✓ What are their chemical composition?
- ✓ How can they be accelerated at such high energies?

#### How can we try to answer these questions?

#### **UHECR**

- One event per century per km<sup>2</sup>
- Many interesting questions

# Pierre Auger Observatory

#### **Main Detectors**

#### **Surface detector**

- array of 1660 Cherenkov stations on a 1.5 km hexagonal grid ~ 3000 km<sup>2</sup>
- duty cycle  $\sim 100\%$

#### Fluorescence detector

- 4 + 1 buildings overlooking the array (24 + 3) telescopes
- duty cycle ~ 13%



#### 3000 km², Malargue, Argentina



### **Energy Spectrum**



# How can we infer the mass composition?

- → looking for differences in the shower development
- Showers from heavier nuclei develop earlier in the atmosphere with smaller fluctuations
- They reach their maximum development higher in the atmosphere



# X<sub>max</sub> from simulations



For a given hadronic interaction model,  $\underline{X}_{max}$  is correlated with the mass of the incident cosmic ray particle

Shower to shower fluctuations, RMS(Xmax), is smaller for showers produced by iron



 $\Delta X \max(p-Fe) \sim 50 \text{ g/cm}^2$ 



### **Arrival Directions**

• Indication for intermediate-scale anisotropy ApJ.Lett. 853:L29 (2018)853:L29

• Observation of Large-scale anisotropy Science 357 (2017) 1266 APJ, 868, (2018) 1

### Search for Intermediate-scale Anisotropies

#### Study motivated by Fermi-LAT observations of high-energy gamma rays

- ightharpoonup SBG: 23 nearby starburst galaxies,  $\Phi >$  0.3 Jy, w : radio at 1.4 GHz
- ho AGN: 17 2FHL blazars and radio galaxies, D < 250 Mpc,  $w : \gamma$ -ray 50 GeV-2 TeV. ω = UHECR flux proxy

### Advantages of the present analysis

- Ansatzes for the relative UHECRS fluxes → potentially more sensitive than previous analysis based solely on the source direction
- Improved knowledge of energy-dependent compositions → attenuation fluxes
- Significant increase of the Pierre Auger Observatory exposure → data can reveal more subtle patterns

# Search for Intermediate-scale Anisotropies

### **Analysis strategy**

Sky model probability maps:



 $\Phi_i$  = flux model x attenuat. model x ang. smearing  $(\sigma)$  x exposure

• Single population signal model  $H_1$ :

$$\Phi = (1-f) \Phi_0 + f \Phi_i$$
 : (free parameters:  $\sigma$  and  $f$ )

- Null hypothesis  $H_0$ : isotropy  $\Phi_0$
- Test statistics:  $TS = 2 \log(H_1/H_0)$
- p-value from Wilk's theorem:  $p(TS) = p_{\gamma 2}(TS, ndf)$

# Test Statistic vs. Energy

SBG fits data better than isotropy at  $4\sigma$  C.L. (penalized by the energy scan)



### Best fit parameters





12

#### **Arrival Directions**

• Indication for intermediate-scale anisotropy ApJ.Lett. 853:L29 (2018)853:L29

Observation of Large-scale anisotropy

Science 357 (2017) 1266 APJ, 868, (2018) 1

# Observation of Dipolar anisotropy above 8 EeV

#### Science 357 (2017) 1266

Harmonic analysis in right ascension  $\boldsymbol{\alpha}$ 

| E [EeV] | events | amplitude $r$             | phase [deg.] | $P(\geq r)$          |
|---------|--------|---------------------------|--------------|----------------------|
| 4-8     | 81701  | $0.005^{+0.006}_{-0.002}$ | $80 \pm 60$  | 0.60                 |
| > 8     | 32187  | $0.047^{+0.008}_{-0.007}$ | $100 \pm 10$ | $2.6 \times 10^{-8}$ |

significant modulation at  $5.2\sigma$  (5.6 $\sigma$  before penalization for energy bins explored)

ICRC 2017



dipole direction ~ 125° from GC



disfavors galactic origin

### Observation of Dipolar anisotropy above 8 EeV

#### Large scale anisotropy can arise from:

- Inhomogeneous large-scale distribution of sources
- Diffusion in X-gal magnetic fields from dominant nearby sources
- Typical dipole amplitudes  $\sim 5 20\%$  at 10 EeV, depending on source distribution and CR composition



### Summary and Results

#### **Spectrum** and composition

- high-exposure study of UHE flux
- strong flux suppression
- FD/SD composition studies
- light composition at ankle
- mixed composition at UHE

#### **Arrival directions**

- Indication for intermediate-scale anisotropy
- Observation of a dipolar anisotropy with  $5.2 \sigma$





### Summary and Results

Although the analysis of Auger data has led to major breakthroughs in the understanding of the origin and properties of the highest-energy cosmic rays, a coherent interpretation has not yet been achieved and new questions have emerged!

**→** AugerPrime



**Mass composition information for each new event detected in next years** 

# Backups

# **Mass Composition**





### Combined Energy Spectrum



# AugerPrime

- Origin of the flux suppression?
- proton fraction at UHE?
- Rigidity-dependence of anisotropies?
- Hadronic Physics above

$$\sqrt{s} = 140$$

Need large-exposure detector with composition sensitivity!



#### Expected performance: scenario 1: maximum-rigidity; scenario 2: photo-desintegration





# AugerPrime

- Origin of the flux suppression?
- proton fraction at UHE?
- Rigidity-dependence of anisotropies?
- Hadronic Physics above

$$\sqrt{s} = 140$$

Need large-exposure detector with composition sensitivity!



The Engineering AugerPrime array





# Combined Fit (Xmax and spectrum) of Auger data

Identical sources homogeneously distributed in a comoving volume

- Injection consisting only of H, He, Ni, Si and Fe (approximately equally space in ln A)
- Power low spectrum with rigidity-dependent exponential cuttof

$$\frac{\mathrm{d}N_{\mathrm{inj},i}}{\mathrm{d}E} = \begin{cases} J_0 p_i \left(\frac{E}{E_0}\right)^{-\gamma}, & E/Z_i < R_{\mathrm{cut}} \\ J_0 p_i \left(\frac{E}{E_0}\right)^{-\gamma} \exp\left(1 - \frac{E}{Z_i R_{\mathrm{cut}}}\right), & E/Z_i > R_{\mathrm{cut}} \mathrm{He}, \end{cases}$$



Caveat: dependence of the propagation models

# Combined Fit (Xmax and spectrum) of Auger data



# Observation of Dipolar anisotropy above 8 EeV

#### **Galactic coordinates**



dipole direction ~ 125° from GC



disfavors galactic origin

# Observation of Dipolar anisotropy above 8 EeV

#### Large scale anisotropy can arise from:

- Inhomogeneous large-scale distribution of sources
- Diffusion in extragalactic magnetic fields from dominant nearby sources

Typical dipole amplitudes  $\sim 5-20\%$  at 10 EeV, depending on source distribution and CR composition



# The Pierre Auger Observatory

#### **Surface detector**

- array of 1660 Cherenkov stations on a 1.5 hexagonal grid ~ 3000 km<sup>2</sup>
- duty cycle  $\sim 100\%$

#### Fluorescence detector

- 4 + 1 buildings overlooking the array (24 + 3) telescopes
- duty cycle ~ 13%

#### **Radio Detector**

• 153 Radio Antenna AERA

#### Low energy extensions

- Dense array (24 km²) + muon detectors
- **→**AMIGA
- 3 high elevation FD telescopes
- → HEAT



#### How well hadronic interactions match data?

Hybrid events with energy  $\sim 10^{19} \text{ eV}$ 

PRL 117, 192001 (2016)

Proton Sim Iron Sim

Data





- Muon deficit in hadr. models:  $1.3 < R_{had} < 1.6$
- Insensitive to energy scale uncertainty:  $R_E \sim 1$



**ICRC 2015** 



#### Results, $\sigma_{p-air}$ in mb

- lower energy point 457.5 ± 17.8 (stat) +19/-25 (syst)
- higher energy point  $485.8 \pm 15.8 \text{ (stat)} +19/-25 \text{ (syst)}$



#### Results, inel $\sigma_{p-p}$ in mb

- lower energy point 76.95  $\pm$  5.4(stat) +5.2/-7.2(syst)  $\pm$ 7 (glauber) at  $\sqrt{S_{pp}}=38.7\pm2.5~{\rm TeV}$
- higher energy point  $85.62 \pm 5(\text{stat}) + 5.5/-7.4(\text{syst}) \pm 7.1 \text{ (glauber)}$  at  $\sqrt{S_{pp}} = 55.5 \pm 3.6 \text{ TeV}$

# Hybrid Detection of Air Showers



# Indication of anisotropy at intermediate scale



### **Energy Spectrum**



# X<sub>max</sub> distributions

#### ICRC 2017



# X<sub>max</sub> distributions

#### ICRC 2017



# Composition fractions



### Search for photons and neutrinos



#### **Neutrinos**

No candidates  $dN/dE = k E^{-2}$ 

 $\rightarrow$  k ~ 5 x 10<sup>-9</sup> GeV cm<sup>-2</sup> s<sup>-1</sup> sr<sup>-1</sup> [0.1-25] EeV

**Auger limits constrain models with pure proton** primaries

#### **Photons**

4 photons candidates above 10 EeV (SD)

3 photons candidates between 1-2 EeV (hybrid)

#### Strictest limits at E > 1 EeV

- Top-down model strongly disfavored
- CR proton dominated scenario start to be disfavored



# Hybrid detection

#### **Hybrid Detection**

#### **Surface Detectors**

- ✓ 1660 water cherenkov stations
- ✓ 1500 m grid
- ✓ duty cicle ~ 100%
- ✓ lateral density distribution

#### **Fluorescence Detectors**

- ✓ longitudinal profile
- ✓ 4 + 1 buildings, 27 telescopes
- ✓ duty cicle ~ 13 %
  - ✓ Taking data since 2004
  - **✓** Completed in 2008



