
Digital Forensics for SSC Solvers

Daniel Kouril

EGI CSIRT

Digital Forensics

• Methods to collect and analyze (digital)
evidence

• Three basic phases

– Data collection, Analysis, Reporting

• Various sources of information

– Host, network

• Online (live) vs. Offline analysis

• https://wiki.egi.eu/wiki/Forensic_Howto

Triage – is there an incident or not?

• Minimize actions

– Every contact leaves a trace

• Quickly examine the system

– Looking for anomalies

– Even minor things may matter

• If incident is confirmed- isolate
services/machines

– Proceed to contain incident

Starting investigation

• Leif Nixon’s cup of tea/coffee

• Don’t try to fix the system now

• Any applicable policies?

• Security contact(s), teams, …

• Do some documentation, note times
– Save outputs

• Prepare for communication

• Isolate the system

Live analysis

• Part of triage

• Checking live system is often important
– Access to memory and working system

• Memory can be gathered
– Hard to hide something

– Processes are “unlocked”

– Data can only be available from memory

– Independent view on OS structures

• But the system may not be yours anymore!

Performing live analysis

• Before you start, secure evidence that could be
changed
– Snapshot(s), take FS metadata, (RAM)

• Start with introspection of the whole system
– Network connections, running processes, ….
– Note processes for additional analysis

• After that, examine suspicious processes
– resources used
– recover files
– obtain memory dumps

Processes

• A process is an instance of a program

– Program is usually an executable file on a disk

• Process keeps data in memory, uses system
resources

– Sometimes released only during termination

• Processes form a hierarchy

System examination

• Closer look at processes

– Strange names, executables

– Distributions of PIDs, relationships, CPU consumption

• Resources in use
• Memory, open sockets (files, networks), shared memory

• Investigations

– User-space commands (common commands)

– Check kernel structures

• Correlation of command outputs, access lower-level info

Commands needed

• Commands

– ps, netstat, lsof

• Kernel structures
– /proc/$PID

• Document/record the process

– Keep track of issued commands

– Save outputs
• Ramdisks (/dev/shm) might be an option

/proc records

/proc/31418

-r--r--r-- 1 kouril kouril 0 May 5 18:46 cmdline

lrwxrwxrwx 1 kouril kouril 0 May 5 18:46 cwd -> /tmp

-r-------- 1 kouril kouril 0 May 5 18:46 environ

lrwxrwxrwx 1 kouril kouril 0 May 5 18:46 exe -> /usr/bin/wget

dr-x------ 2 kouril kouril 0 May 5 18:46 fd

lrwx------ 1 kouril kouril 64 May 5 18:46 0 -> /dev/pts/47

lrwx------ 1 kouril kouril 64 May 5 18:46 1 -> /dev/pts/47

lrwx------ 1 kouril kouril 64 May 5 18:46 2 -> /dev/pts/47

lrwx------ 1 kouril kouril 64 May 5 18:46 3 -> socket:[3097580]

l-wx------ 1 kouril kouril 64 May 5 18:46 4 -> /tmp/ubuntu-19.04-

desktop-amd64.iso?_ga=2.213675796.1604966281.1557074696-

1247976767.1557074696

Deleted files

• Unix keeps deleted files open until they are closed
• ls /proc/$PID/exe:

lrwxrwxrwx 1 kouril kouril 0 May 4 07:31 exe ->

 /tmp/wget (deleted)

• Proc’s “symbolic links” can be used for easy
recovering the data
– cp/cat/… /proc/$PID/exe /tmp/dest

– The process must be still running!

• Both executable and open files (see the fd directory)

Open files
(lsof -p 31418 –n)

COMMAND PID USER FD TYPE DEVICE SIZE/OFF NODE NAME

wget 31418 kouril cwd DIR 252,0 36864 524291 /tmp

wget 31418 kouril rtd DIR 252,0 4096 2 /

wget 31418 kouril txt REG 252,0 407696 393524 /usr/bin/wget

wget 31418 kouril mem REG 252,0 43616 1049154 /lib/x86_64-linux-gnu/

libnss_files-2.19.so

wget 31418 kouril mem REG 252,0 3165552 394658 /usr/lib/locale/locale-archive

wget 31418 kouril mem REG 252,0 14664 1064472 /lib/x86_64-linux-gnu/libdl-2.19.so

wget 31418 kouril mem REG 252,0 1857312 1064478 /lib/x86_64-linux-gnu/libc-2.19.so

wget 31418 kouril mem REG 252,0 18936 1050745 /lib/x86_64-linux-gnu/libuuid.so.1.3.0

wget 31418 kouril mem REG 252,0 207128 397935 /usr/lib/x86_64-linux-gnu/libidn.so.11.6.11

wget 31418 kouril mem REG 252,0 100728 1048634 /lib/x86_64-linux-gnu/libz.so.1.2.8

wget 31418 kouril mem REG 252,0 1938752 1050644 /lib/x86_64-linux-gnu/libcrypto.so.1.0.0

wget 31418 kouril mem REG 252,0 387272 1050636 /lib/x86_64-linux-gnu/libssl.so.1.0.0

wget 31418 kouril mem REG 252,0 149120 1064460 /lib/x86_64-linux-gnu/ld-2.19.so

wget 31418 kouril mem REG 252,0 26258 671480 /usr/lib/x86_64-linux-gnu/gconv/gconv-modules.cache

wget 31418 kouril 0u CHR 136,47 0t0 50 /dev/pts/47

wget 31418 kouril 1u CHR 136,47 0t0 50 /dev/pts/47

wget 31418 kouril 2u CHR 136,47 0t0 50 /dev/pts/47

wget 31418 kouril 3u IPv4 3101285 0t0 TCP 127.0.0.1:44280->127.0.0.1:8118 (ESTABLISHED)

wget 31418 kouril 4w REG 252,0 14777874 573900 /tmp/ubuntu-19.04-desktop-amd64.iso?_ga=2.213675796.1604966281.1557074696-1247976767.1557074696

Open network connections
(netstat –tnp)

Active Internet connections (w/o servers)

Proto Recv-Q Send-Q Local Address Foreign Address State PID/Program name

tcp 0 0 127.0.0.1:9050 127.0.0.1:34902 ESTABLISHED -

tcp 0 0 127.0.0.1:44280 127.0.0.1:8118 ESTABLISHED 31418/wget

Dumping process memory

• gcore –o dump

– Part of the GDB package

– Some (soft) errors might be triggered

• Outputs an ELF file (see later) containing the
process memory

Executable file analysis

• Static analysis

• Dynamic analysis

Binary executable analysis

ELF

Look inside an ELF executable

https://binvis.io/

• Statically vs. dynamically linked binaries
• file exe
exe: ELF 64-bit LSB executable, x86-64, version

1 (GNU/Linux), for GNU/Linux 2.6.32, statically

linked, stripped

Static analysis of binary files

• Determine the type
file /bin/bash

/bin/bash: ELF 64-bit LSB executable, x86-64, version 1 (SYSV), dynamically linked (uses
shared libs), for GNU/Linux 2.6.24,
BuildID[sha1]=7e4c4de7a4d259aeb0896fd579609bb6c27fae8d, stripped

• Content analysis
– Either break down individual ELF sections and analyse them

• .rodata, .data - constants (strings), text - code
• readelf, Python elftools

– or do quick examination of the whole file
• Human readable strings

– strings –a <binary>

• Strings often point to username, file paths, function names, . . .
• Malware producers tend to obfuscate important strings

– XOR, base64, . . .
– Dynamic calls to library functions
– dlopen(), dlsym()

Countermeasures

• Encoded (packed) binaries

– Binary is encoded by a customized algorithm and
gets unpacked during executions

– Binary executables – in place extraction

– Scripts – self-executable archives of files

• Obfuscated scripts

– very often used for PHP or Javascript

Executable packer UPX

• LZMA-based compression applied on executable,
which yields another executable
– An unpacking routine at the beginning
– Extraction to process memory

• Easily to detect
– No human-readable strings
– This file is packed with the UPX
executable packer http://upx.sf.net

• Difficult to analyze directly
– Contents of the binary is compressed

• upx –d <binary> decodes the original file

Next Session

• A joint walk-through the SSC malware

• VMs available for hands-on exercise

• SSH client necessary, access credentials will be
circulated

