Digital Forensics for SSC Solvers

Daniel Kouril
EGI CSIRT

Digital Forensics

Methods to collect and analyze (digital)
evidence

Three basic phases

— Data collection, Analysis, Reporting

Various sources of information

— Host, network
Online (live) vs. Offline analysis
https://wiki.egi.eu/wiki/Forensic_Howto

Triage — is there an incident or not?

* Minimize actions

— Every contact leaves a trace

* Quickly examine the system
— Looking for anomalies
— Even minor things may matter
* |f incident is confirmed- isolate
services/machines
— Proceed to contain incident

Starting investigation

Leif Nixon’s cup of tea/coffee
Don’t try to fix the system now
Any applicable policies?
Security contact(s), teams, ...

Do some documentation, note times
— Save outputs

Prepare for communication
Isolate the system

Live analysis

Part of triage

Checking live system is often important
— Access to memory and working system

Memory can be gathered

— Hard to hide something

— Processes are “unlocked”

— Data can only be available from memory
— Independent view on OS structures

But the system may not be yours anymore!

Performing live analysis

e Before you start, secure evidence that could be
changed
— Snapshot(s), take FS metadata, (RAM)

e Start with introspection of the whole system

— Network connections, running processes,
— Note processes for additional analysis

* After that, examine suspicious processes

— resources used
— recover files
— obtain memory dumps

Processes

* A process is an instance of a program

— Program is usually an executable file on a disk

* Process keeps data in memory, uses system
resources

— Sometimes released only during termination

* Processes form a hierarchy

System examination

* Closer look at processes

— Strange names, executables

— Distributions of PIDs, relationships, CPU consumption
* Resources in use

* Memory, open sockets (files, networks), shared memory

* |[nvestigations

— User-space commands (common commands)

— Check kernel structures

* Correlation of command outputs, access lower-level info

Commands needed

* Commands
— ps, netstat, 1lsot

e Kernel structures
— /proc/SPID

 Document/record the process

— Keep track of issued commands

— Save outputs
 Ramdisks (/dev/shm) might be an option

/proc/31418

-r—-——r——-r—-—
lrwxrwxrwx 1
_r ________

lrwxrwxrwx 1

kouril
kouril
kouril

kouril

kouril
kouril
kouril
kouril
kouril

kouril

/proc records

kouril
kouril
kouril

kouril

kouril
kouril
kouril
kouril
kouril

kouril

o O o O

64
64
64
64
64

May
May
May
May

May
May
May
May
May
May

desktop-amd6o4.iso? ga=2.213675796.
1247976767.1557074696

5 18:46 cmdline
5 18:46 cwd -> /tmp
5 18:46 environ
5 18:46 exe -> /usr/bin/wget
5 18:46 fd
5 18:46 0 -> /dev/pts/47
5 18:46 1 -> /dev/pts/47
5 18:46 2 -> /dev/pts/47
5 18:46 3 -> socket:[3097580]
5 18:46 4 -> /tmp/ubuntu-19.04-
1604966281.1557074696-

Deleted files

* Unix keeps deleted files open until they are closed
ls /proc/$PID/exe:

lrwxrwxrwx 1 kouril kouril 0 May 4 07:31 exe ->
/tmp/wget (deleted)

* Proc’s “symbolic links” can be used for easy
recovering the data

— cp/cat/.. /proc/$PID/exe /tmp/dest
— The process must be still running!

* Both executable and open files (see the fd directory)

COMMAND PID USER
wget 31418 kouril
wget 31418 kouril
wget 31418 kouril
wget 31418 kouril
libnss files-2.19.so0
wget 31418 kouril
wget 31418 kouril
wget 31418 kouril
wget 31418 kouril
wget 31418 kouril
wget 31418 kouril
wget 31418 kouril
wget 31418 kouril
wget 31418 kouril
wget 31418 kouril
wget 31418 kouril
wget 31418 kouril
wget 31418 kouril
wget 31418 kouril
wget 31418 kouril

(Isof -p 31418 —n)

FD
cwd
rtd
txt
mem

mem
mem
mem
mem
mem
mem
mem
mem
mem
mem
Ou
lu
2U
3u
dw

Open files

TYPE
DIR
DIR
REG
REG

REG
REG
REG
REG
REG
REG
REG
REG
REG
REG
CHR
CHR
CHR
IPv4
REG

DEVICE
252,0
252,0
252,0
252,0

252,0
252,0
252,0
252,0
252,0
252,0
252,0
252,0
252,0
252,0
136,47
136,47
136,47
3101285

SIZE/OFF

36864
4096
407696
43616

3165552
14664
1857312
18936
207128
100728
1938752
387272
149120
26258
0tO0

0to

0to

0to

252,0 14777874

NODE
524291
2
393524
1049154

394658
1064472
1064478
1050745

397935
1048634
1050644
1050636
1064460

671480

50

50

50

TCP
573900

NAME

/tmp

/

/usr/bin/wget

/1ib/x86 64-linux—-gnu/

/usr/lib/locale/locale-arc
/1ib/x86 64-linux—-gnu/libc
/1ib/x86 64-linux—-gnu/libc
/1ib/x86 64-linux—-gnu/libu
/usr/1lib/x86 64-1linux-gnu/
/1ib/x86 64-linux-gnu/libz
/1ib/x86 64-linux—-gnu/libc
/1ib/x86 64-linux—-gnu/libs
/1ib/x86 64-linux-gnu/ld-z
/usr/1lib/x86 64-1linux-gnu/
/dev/pts/47

/dev/pts/47

/dev/pts/47

127.0.0.1:44280->127.0.0.1
/tmp/ubuntu-19.04-desktop-

Open network connections
(netstat —tnp)

Active Internet connections (w/0 servers)
Proto Recv-Q Send-Q Local Address Foreign Address State PID/Program name
tcp 0 0 127.0.0.1:9050 127.0.0.1:34902 ESTABLISHED -

tcp 0 0 127.0.0.1:44280 127.0.0.1:8118 ESTABLISHED 31418/wget

Dumping process memory

°* gcore —o dump
— Part of the GDB package

— Some (soft) errors might be triggered

e Qutputs an ELF file (see later) containing the
process memory

Executable file analysis

e Static analysis
* Dynamic analysis

Binary executable analysis

@~@ "@e"e*\"@"["@"F~@"@"@"E"@"@"@E@"@"@"@"@"@"@"@E"@E@"@"@"@"@"@@e"c@ @ @ @ @ @e"A"@"@"@"@"@"@e"~A"~@"@
ARA@M@MR<9C>GANAEARNENENENENE AEMEMEMNEMRMANRMRNENF AN EEY NN @ @ @ 00YN @ @ e " eIyN" """ e e, <Be>
@@*@"@*@"@"@*@"@"@*@"@"@"@"@*@"@ @@ P~@"@~@"@"@" @“@Ratd“[’“@“@“@ﬁy“ﬂ"@“@ @ @"‘@ﬁ?""@“@“@“@ @yn"@~@"@
N@ “A:Bﬂ:cﬁﬂr“@@ﬂ“@“U“@A“C“RJ:Bc::B1:!“P“Kh“DﬁH“@“HS“@“\“Ha“A“@“F"“@chﬂ:
6/@"H<82>"HAR@"ANL2~Y@@B ! A*DB"@
NP<BO>0<8a>In<B9><80>p<B1>(¢ BAG EAFh EAH A@ @ @ @("@<B88><91>"LH ~[+"Q"D"@H&"RA<80> P @D"@! RD "K"@
M\ <81>"@ DA @ $DI<BO><BB><BO>AHP ' ~F
<94> ADACAPAVAF@EANEAP<B4>47P " <Be>"H@ RAC @"@d "@L@ H @ @<88>0 "~Ad<98>P<90>CD DBAY<80>@ ~V<90> HAN@% ~
CAP27@2B°X<88>"D"@<80>"BE TBEA@ @@ @ @"@"@" @ HA~BANPDS<96>~P A
<90>"BA"<95> B@"H @A E~@"A<94>% @
<8a> "HATA@ @ @@ @B ~A"PO"0 M@ @<80><90>°AHhADA@ @ @@ H H@"Cc@"@ Ab<88>~PAAB~@"Qh”KHB;H"@<98><81>
ASDAPA” 17 @ AB<B2>"BAM<90>[q AM@° "D@E<BB> X ATAPA@<B2>A\EAFAR <83>M@<BesY
AABAXdHA@a (AAB<90>~X P"@B1 R@"C @ @<82> @ Lp<B84> HA@A@" ALAMQ DPAC @~ <81><925>~@ B2 PAPAD<IC>B@ HAANM s
n@ AE<91>"2<93>BAT)OACSAHANA@ AN _"A<B8O>"PADABS AM@DF; ~@ X0"IAB P HAD<90> "V @"A)4" P @<94>"DAa S H@"@"
A<87>A@D ~"AX HAP"<99>APAM@<B4>"PA@ ~BAB@"B<80>B82 ~VAHBHAT<80><B8b>"P <B80>"A<B8O>~X I&<Ba>@ M= @AH AdL
@ A<82><84> B<B1>("P ~BpDEkB AD"(<86>tH" <81>$yh"BAFO@(<BB><80>>"T<B85>AUN@ANRAD<BO>@<8B8>0<90> B AA"AFi
M ABMA@!BA@E%) PADH<84><BO><90> A

1,1 Top

=

ELF

F°%a Linux executable walkthrough AngsAbertini s

Dissected file

ELF header

identlfy as an ELF type
specify the architecture

T,-’Slmplleﬁ‘-i el

Program Header table

Execution infermation

f Hello World!

Headef

technical details for
identification and execution yd

Code

executable information

simple64.elf sections

450104 delccbk 2o ea e e el dt
dowrioad & #¥101 carkarmi.com contents of the executable

information used by the cade

Sections' names

headef

technical details for linking
({ignored for execution)

Section Header table

Linking (connecting program objects) information

Hexadecimal dump ASCIl dump

Fields Values Explanation
e_ident
EI_MAG 0x7F, "ELF" constant signature
EI_CLASS, EI_DATA ks o 64 bits, Little-Endian
Always 1
2 Executable
F AR A 0x3E" AMD &4 {and later)
7F 45 4C 46 02 01 00 00 0000 0000000000 ELF.. . it . Always 1
2 00 3E 00 01 00 00 00 3A:Idnass where execution starts
00 00 00 00 00 00 00 FO 00 60 00 00 00 00 00 e e_phoff 00 Program Headers' offset
o . & shoff 0xFO Section Headers' offset
00 00 00 00 40 00 01 004000 04 00 @ e ehsize 0x40 EIf header's size
Size of a single Program Header
1 Count of Program Headers
0x40 Size of a single Section Header
4 Count of Section Headers
2 Index of the names' sectian in the table
Oftat Ordiiddress: O 4 1 The segment should be loaded in memory

01 00 00 00 00 00 00 00 00 00 00 DO Readable and eXecutable

00 00 00 10 00 00 00 00 00 00 00 10 00 00 00 00 ... p_offset o Offset where it should be read
DO 00 00 00 00 00 00 0O p_vaddr 0x10000000 Virtual address where it should be loaded
p_paddr 0x10000000 Physical address where it should be loaded
00 00 00 00 00 00 00 00 Size on file
p_memsz oxD0 Size in memory

%64 assembly Equivalent C code

mow rdx,
OMfsat ixBiAd druss x a0 mev rsi, 0x100000C0O°
48 BA 48 C7 C6 CO 00 00 H. Hou mov rdi, 1

mov rax, ! 1 1 !
10148 C7 C7.0100 0000 46 C7 CO OF HuviH. syscall = Wiite| STDOUT_FILEN®, “Hello World'in®, len("Hello Worlg!n"11;
0548 CY C7 48 C7 C0O 3C 00 00 00OF H.. H.<

mov rdi,

mow rax, 0x3C v)
syscall -t

Strings

Offset e adress Ox] (2000C0

35‘":}:‘"-'5 687374 16200
2E 72 6F 64 61 74 61 00

. 2 Section names
.radata i chrtrtab

rodata

|00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

000’00 00 00 00 00 00 00 00 00 00 00 00 00 DD ..vvvrvvv .o

Q0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 OO0
00 00 00 00 00 00 00 00 DO 00 00 00 00 00 00 DO

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 OO0

0B 00 00 00 06 00 00 00 00 00 00 00
80 00 00 10 00 00 00 00 o+
310000000000 00000000000000000000 1

Section Header table

Index Name “rveE " FLAGS ADDRESS

0 <rull>

OFFSET

11 00 00 00 02 000000 00 0000 0O [0x 1000008 "Hhad 0x31
€000 00 10 00 00 00 00 2 0x100060CT 0x0D
00 0000 00 0000 00 00 00 00 00 00 00 00 00 00 0x19

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
01 00 00 00 00 00 00 00 00 00 00 DO
00 00 00 00 00 00 00 00

19 00 00 00 00 00 00 00 Q0 00 00 00 00 00 Q0 00 ..

. /000000 00000000 000000000000000000 ...

This is the whole file, hawever, most ELF files contain many mare elements,
Explanations are simplified, for conciseness,

51Z

Look inside an ELF executable

byteclass
8x00

low
ascii
high
Axff

! https://binvis.io/

e Statically vs. dynamically linked binaries

e file exe

exe: ELF 64d4-bit LSB executable, x86-64, version
1 (GNU/Linux), for GNU/Linux 2.6.32, statically
linked, stripped

Static analysis of binary files

 Determine the type

file /bin/bash

/bin/bash: ELF 64-bit LSB executable, x86-64, version 1 (SYSV), dynamically linked (uses
shared 1libs), for GNU/Linux 2.6.24,
BuildID[shal]=7e4c4de7a4d259%9aeb0896fd579609bb6c27fae8d, stripped

* Content analysis

— Either break down individual ELF sections and analyse them
* .rodata, .data - constants (strings), text - code
e readelf, Python elftools

— or do quick examination of the whole file
* Human readable strings
— strings —-a <binary>
» Strings often point to username, file paths, function names, . ..
* Malware producers tend to obfuscate important strings
— XOR, baseb4, . ..

— Dynamic calls to library functions
— dlopen(), disym()

Countermeasures

* Encoded (packed) binaries

— Binary is encoded by a customized algorithm and
gets unpacked during executions

— Binary executables — in place extraction

— Scripts — self-executable archives of files
e Obfuscated scripts

— very often used for PHP or Javascript

Executable packer UPX

LZMA-based compression applied on executable,
which yields another executable

— An unpacking routine at the beginning
— Extraction to process memory
Easily to detect

— No human-readable strings

— This file 1s packed with the UPX
executable packer http://upx.sf.net

Difficult to analyze directly
— Contents of the binary is compressed
upx —d <binary> decodes the original file

Next Session

* Ajoint walk-through the SSC malware
 \VMs available for hands-on exercise

* SSH client necessary, access credentials will be
circulated

