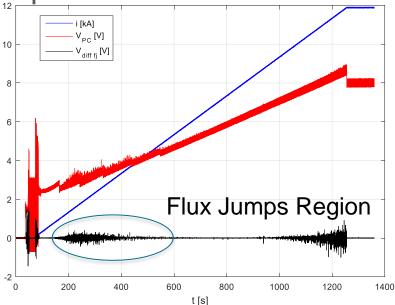

Flux Jumps Signals in Power Converters

Michele Martino and Samer Yammine

WP3 Meeting on 16-05-2018

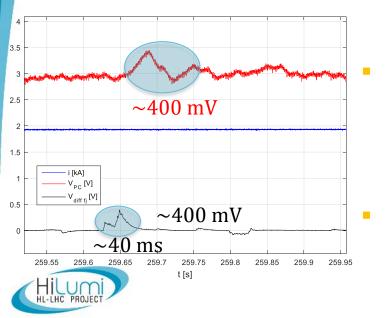
Power Converter Control Loop

Simplified representation of the PC current control loop

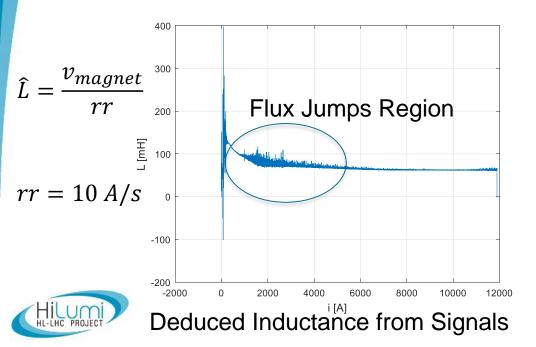


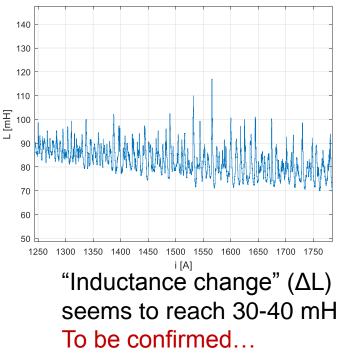
- Impedance of the magnet contributes highly to the control performance
- Impedance of the magnet varies (for instance due to saturation)
- Flux Jumps are believed to contribute as well to the impedance variation
- Load voltage is the relevant voltage for the power converter

Power Converter Signals during Flux Jumps


 Signals for Fresca-2 test with cluster G power converter during ramp-up at 10 A/s

Power Converter Signals during Flux Jumps


 Flux jump could occur during ~100ms and an impedance variation occurs spontaneously (leading to a pc voltage response to regulate the current)



- Variations on current cannot be distinguished due to measurement noise on these plots \rightarrow Minor impact on the current as the current loop is not "much" perturbed by flux jumps (at this coarse level of precision)
- More analysis is needed for Class0 requirements for HL-LHC (sub-ppm level of precision)

Power Converter Signals during Flux Jumps

 Estimated inductance "seen by the power converter" during operation

Conclusion

- First results on Fresca-2 are hinting towards an "inductance fluctuation" model of the flux jumps; these fluctuations are rejected by the on the current loop
 - amplitude and time dynamics of the fluctuations depend on the magnet
 - EPC needs to quantify how much rejection (depends both on RST and time dynamics)
- Results of 11T and on MQXF prototype have to be studied to have an HL-LHC case study
- Simulations base on gathered results to be performed in the 11T trim/RB circuit control model and the inner triplet control model (with the decoupling matrix) to study the impact of flux jumps at the circuit level

