m_w in the HL/HE-LHC era

Contributors: N.Andari, F.Balli, M.Boonekamp, J.Kretzschmar, J.McFayden, T.Xu

• m_w is a key parameter of the standard model, and we need to invest effort in its measurement with the objective of reaching $dm_w \sim 5$ MeV (or thereabout), i.e. below the precision of the indirect determination

NB : hand-waving world-averages start appearing, with values $\delta m_w \sim 11-13$ MeV, depending on the assumed correlation between the TeVatron and ATLAS measurements

The upgraded tracker

ITK layout :

- With proper trigger, allows to record single-electron events (W \rightarrow ev) up to $|\eta|$ ~4
 - Muon trigger still stops at $|\eta|$ ~2.7

De/correlation of PDF uncertainties

Pseudo-rapidity bins of the ATLAS measurement:

PDF uncertainty:

- in each bin: 20-30 MeV

- combined : ~8-9 MeV

- Tevatron: extending the lepton pseudorapidity range from ~1 to ~2 is expected to divide the PDF uncertainty by ~2
- LHCb study (arXiv:1508.06954): finds ~30% reduction of PDF uncertainty from combining the General Purpose Detectors with LHCb
- What do we gain from the extended pseudorapidity range in ATLAS?

Potential of low pile-up samples

- In 2017, ATLAS took ~270 pb-1 at 5 TeV and ~155 pb-1 at 13 TeV, μ ~2.
 - 1.3M + 1.7M clean, well measured candidates
 - Statistical sensitivity: ~13 MeV from each sample, and for each distribution (pT, mT) –
 correlations to be evaluated

Proposal

- Event generatior + smearing at 13 and 27 TeV
 - μ~2
 - 10M events at each energy and for each lepton flavour (e, μ)
 - Include PDF uncertainty variations
- Estimate potential of ~1-2 weeks of low pile-up data at each energy
 - ~200 pb⁻¹; ~2M candidates at 13 TeV; ~4M at 27 TeV
 - If interesting, could of course ask for a bit more (and/or at different energies)
- Evaluate the gain of
 - The additional η range ($|\eta| < 2.5 \rightarrow |\eta| < 4$) at 13 TeV (accessible in the electron channel)
 - The jump in center-of-mass energy

via decorrelation of PDF uncertainties.

Depending on results, motivates work to bring other sources of uncertainty (QCDxEW corrections, pTW/pTZ...) on par.

Event generation: Powheg + Photos; internal PDF variations

13TeV | CT10 uncertainties

First look at PDF weights:

Event generation : Powheg + Photos; internal PDF variations

5TeV | CT10 uncertainties

First look at PDF weights:

Event generation : Powheg + Photos; internal PDF variations

13TeV/5TeV | Central values

Smearing:

- Recoil : at μ ~2, $u_T^{smeared}$ ~ u_T^{true} \oplus ~6 GeV (depending on bosn p_T and SumET)
- Leptons: standard resolution parametrizations, reproducing expected ATLAS performance

 $\sigma/E \sim a/E^{1/2} \oplus b/E \oplus c$ Electrons:

 $(a \sim 12\%, b \sim 100-200 \text{ MeV}, c \sim 0.7\%)$

Muons:

 $\sigma/p_{\scriptscriptstyle T} \sim r_{\scriptscriptstyle 0}/p_{\scriptscriptstyle T} \oplus r_{\scriptscriptstyle 1} \oplus r_{\scriptscriptstyle 2} * p_{\scriptscriptstyle T} \qquad (r_{\scriptscriptstyle 1} \sim 2\%)$

Being improved, but already allows uncertainty estimates with <10% accuracy

Outline of contribution

- 2-3 pages of text:
 - Event selection; expected statistics; categories ($|\eta|$ bins, etc); statistical precision of mW fit
 - PDF uncertainties and uncertainty correlations in the various configurations
- Figures : example pTl and mT distributions
- Tables:

- PDF uncertainties:

	CT14	MMHT2014	
(1) 7 TeV, η <2.5			
(2) 13 TeV, η <2.5			
(3) 13 TeV, η <4.0			
(4) 27 TeV, η <4.0			

- PDF correlations for the four configurations
- Cumulative PDF uncertainties (1) \rightarrow (1)+(2) \rightarrow (1)+(2)+(3) \rightarrow (1)+(2)+(3)+(4)