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ABSTRACT
This paper focuses on the performance analysis and optimization
for enabling efficient implementations of next generation beam
dynamics simulations. Nowadays large worldwide research centers,
e.g. CERN, Fermilab etc. are continuously investing in resources and
infrastructures for progressing knowledge in the fields of particle
physics, thus requiring careful studies and planing for upcoming
upgrades of the synchrotrons and the design of future machines.
Consequently, there is an emerging need for simulations that in-
corporate a collection of complex physics phenomena, produce
extremely accurate predictions while keeping the computing re-
sources and run-time to a minimum. A variety of simulator suites
have been developed, however, they have been reported to lack
in simulation speed, features and ease-of-use. In this paper we in-
troduce the Beam Longitudinal Dynamics (BLonD) simulator suite
from a computer engineering perspective. We analyze its perfor-
mance to understand its current bottlenecks and enhance it further
in an attempt to make complex, accurate and fast beam dynamics
simulations possible. We show that through careful and targeted
analysis and code tuning, the proposed BLonD++ implementation
delivers significant gains in terms of performance, i.e. up-to 23×
single-core speedup and scalability, thus enabling the deployment
of even more complex simulations than the current state-of-art.
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1 INTRODUCTION
The Large Hadron Collider (LHC) is the world’s largest and most
powerful particle accelerator. It started up on September 2008 and
remains the latest addition to CERN’s accelerator complex. LHC is
used to collide high-energy particles in order to study the fundamen-
tal laws of particle physics. A series of particle accelerators, mainly
circular machines called synchrotrons or injectors, are used to accel-
erate these particles to increasingly higher energies. The injectors
of the LHC in order are: the Proton Synchrotron Booster (PSB), the
Proton Synchrotron (PS) and the Super Proton Synchrotron (SPS).
As these machines are working at very different energy ranges, the
beam motion is dominated by different physics phenomena in each
machine.

The collection of charged particles in the accelerators is called a
beam and interacts with the conducting material of the machine
in which it is circulating. Beam dynamics is the field of physics
that describes the beam motion in particle accelerators. The beam
consists of several bunches, and each of these bunches is a compact
collection of charged particles, kept together by a large external
radio frequency (RF) voltage.

With the upgrade projects of the CERN synchrotrons [9, 12]
and studies of future machines [2], there is a growing need for
precision simulations that can combine for a given study all the
relevant physics effects with the machine-specific features. At the
same time, the simulation suite has to be general enough to cover
a large range of synchrotrons, from low- to high-energy regimes,
accelerating protons, electrons or ions.

To fulfill these critical requirements, the Beam Longitudinal
Dynamics simulation suite (BLonD) [1] has been developed at CERN
since 2014. It focuses on the longitudinal plane of the beam and
tracks the energy and time coordinates. Written in Python and
C++, this tracking code has a modular structure that allows the
user to include different physics models depending on what the
study requires. Furthermore the BLonD simulator is an open-source
project and supports essentially every platform that disposes a
Python interpreter and a C compiler.

https://doi.org/
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By now, through extensive application for beam studies in- and
outside of CERN, the BLonD suite has been thoroughly bench-
marked [23]. The benchmarks performed range from comparisons
with theory and measurements, to other particle tracking codes and
increased the trust in BLonD and its predictions. The outcome of
the simulation studies is continuously guiding the baseline choices
for machine upgrades and future machines.

For instance, for the upcoming upgrade of the SPS [20], sci-
entists rely heavily on the results of BLonD simulations to give
predictions on what can be achieved in the future. In many cases
the machines are being pushed beyond their designed limits. The
upgraded systems are designed with minimal margins in order to
be as cost-efficient as possible. Thus, simulations need to be very
accurate, despite the complexity of the machines. Also, whenever
new phenomena in operational machines are discovered it is crucial
to have a tool that can reproduce and explain observations.

To cope with the overwhelming simulation complexity and pre-
diction accuracy needed in the field of longitudinal beam dynam-
ics, this paper focuses on optimizing the run-time performance of
the current state-of-art longitudinal beam dynamics simulator, the
BLonD suite. We focus on four realistic simulation scenarios, each
concerning a different particle accelerator, and use them as testcases
for our performance analysis. As a first approach to performance
optimization, the computationally most intensive parts of the code
are ported to C++. Then, the Top-Down method [26] is applied
on the testcases to provide an in-depth micro-architectural insight
of BLonD. Based on the analysis outcome, we identify a series of
bottlenecks and proceed to mitigate them through compiler tun-
ing, use of high performance scientific libraries and other software
optimization techniques. In addition, we employ OpenMP [8] to par-
allelize the compute intensive code regions. BLonD++, the proposed
implementation, combines an efficient C++ computational core
with a higher-level control-flow code written in Python. Finally, we
evaluate the single-core run-time performance of BLonD++ as well
its scalability in a multi-core Intel Haswell [13] server platform.
The proposed implementation demonstrates an up to 23× single-
core run-time speedup. By dramatically reducing the duration of
a week-long simulation to below 9 hours, BLonD++ has enabled
several beam dynamics studies that were previously unfeasible due
to run-time, memory and CPU limitations.

The paper is organized as follows: Section 2 reviews prior art
on beam longitudinal dynamics simulators. Section 3 provides an
overview of the structure of the BLonD suite. In Section 4, a detailed
description of the methodology we followed to tackle the current
limitations of BLonD is presented. The experimental evaluation of
BLonD++ in terms of single-core performance and scalability takes
place in Section 5. Section 6 concludes this paper.

2 RELATEDWORK
At CERN, scientists needed a highly customizable tool-set for simu-
lations to drive a large range of longitudinal beam dynamics studies.
The physics features that required to be modeled were not imple-
mented in any other code, thus the development of the BLonD
simulator suite started back in 2014.

Prior to BLonD, ESME [17] was widely used in the area of longi-
tudinal beam dynamics. Developed at Fermilab since 1984, the code

is written in Fortran and is compatible with few Unix-based oper-
ating systems like Solaris. Some common features between ESME
and BLonD have been benchmarked in terms of correctness and the
results show total agreement [23]. Due to lack of support, mainte-
nance and development of new features since 2011, the scientific
community is adopting BLonD more and more.

Another alternative is the Py-orbit [21] code. Py-orbit is a “Particle-
In-Cell” (PIC) code and is a mix of python and C++. As it is a 6D
tracker, it can also model transverse beam dynamics, but conse-
quently, the computational complexity of a py-orbit simulation is
significantly heavier than a BLonD simulation. Good agreement
between the two codes has been reported in the literature [10, 23].
Being a general-purpose code, py-orbit lacks many of the specific
longitudinal features available in BLonD. Similarly to py-orbit, El-
egant [7] is a 6D tracking code too. It was developed since 2000
at the Argonne National Laboratory. Elegant is a mature code in
terms of performance optimizations as it has been parallelized with
MPI [25] and features a GPU accelerated version [16].

The BLonD suite differs from the aforementioned codes in nu-
merous ways. The python front-end makes BLonD easy-to-use and
particularly attractive to new users. The modular structure allows
rapid prototyping of new features that extend its capabilities. Con-
trary to py-orbit and elegant, BLonD specializes in the longitudinal
plane and as a consequence, it contains more detailed physics mod-
els and is computationally less heavy, resulting in shorter simulation
times. Finally, BLonD has been tested successfully on a wide range
of real-world simulation scenarios.

3 BACKGROUND
3.1 The BLonD suite architecture
Figure 1 summarizes a simple particle accelerator model containing
the three main components of BLonD: the ring, the RF section(s) and
the beam. Following the object-oriented design, these components
are represented by different classes in the code. Their interactions,
the most essential ones being shown in Fig. 1, are usually modeled
by a method. In some cases, where heavy parametrization is needed,
an interaction is separated into a class.

The ring itself is described by the properties that contain infor-
mation amongst others about the acceleration and the machine
impedance which can interact with the beam current and produce
an induced voltage.

A beam can be composed of several bunches made up of charged
particles. In reality, a bunch can contain trillions of particles, how-
ever, in simulations macro-particles are used which represent many
real particles in order to reduce the memory footprint. The user
is responsible for determining the amount of macro-particles re-
quired to describe a certain physical phenomenon with sufficient
resolution. The computational complexity of most operations in
a BLonD simulation scales linearly with the number of simulated
macro-particles, which typically ranges from 500 thousand to 100s
of millions.

RF sections are placed in fixed locations along the ring, and this
is where the particles are accelerated; the required energy being
fed by large RF amplifiers. The acceleration, meaning the increase
of the particle energy, is described by either the continuous kick()
or the linearly interpolated LIkick() operation. The latter is a
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Figure 1: Simplistic synchrotron model. The ring, the beam
and the RF sections are the main components. Their inter-
actions are simulated with BLonD on a turn-by-turn basis.

simplification that replaces an expensive trigonometric function
calculation with a pre-calculated look-up table. The number of RF
stations used depends on the modeled case and ranges typically
from one to a dozen. The beam motion from one RF station to an-
other is modeled by the drift() operation. The rigorous equations
of motion modeled in BLonD can be found in the work of H. Timko
et al. [22]. A full cycle of the beam corresponds to a single simula-
tion iteration. The number of iterations required for a given study
can rage from a few thousand to a few million.

Along the machine there can be various sources of impedance,
for instance the beam pipe itself is made of conducting material
and interacts with the beam current distribution, that is the particle
charge histogram along the time coordinate. The latter is calculated
by the hist() method. The beam-impedance interaction is most
efficiently modeled in the frequency domain, for which forward
and backward fast Fourier transformations are needed.

In synchrotrons, magnets are used to bend the beam trajectory,
and this bending causes the charged particles to radiate off part
of their energy. This phenomenon is called synchrotron radiation
(SR()) and might or might not be negligible depending on the
studied case.

BLonD is a modular and flexible library. A BLonD simulation
scenario is an assembly of components which in turn can be com-
posed of smaller sub-parts. The user, knowing which physics effects
are essential for a given study, initializes the relevant components.
Then, the user wires the components to form a pipeline of physics
transformations that will be computed on a turn-by-turn basis.
Some optional features of BLonD include a complete tool-set for
data analysis, storage and plotting.

Table 1: Basic configuration and run-time of the selected
testcases in the python-only version.

Testcase Turns Particles RF Stations Run-time

PSB 500K 2M 1 ∼3 days
SPS 100K 72M 1 ∼2 weeks
LHC 14M 600K 1 ∼10 days
FCC 100K 1M 2 ∼16 hours

3.2 Realistic testcases
The runtime performance of a simulation highly depends on the
physics to be modeled, or in other words, on what modules the
user choses to combine. This is why, for the performance analysis
of the BLonD suite, we chose to analyze four realistic cases that
cover a wide range of CERN applications. Each case considers a
different particle accelerator. These are: PSB, SPS, LHC and the
Future Circular Collider (FCC). The latter is a 100 km collider that
is presently under study.

PSB. The PSB is the lowest energy synchrotron, dominated by so-
called space-charge effects that require a large amount of simulated
macro-particles. It requires the use of the continuous version of
kick() to avoid numerical noise.

SPS. The interaction with the machine impedance requires to
model around 100 bunches with at least 1M macro-particles each
resulting in a memory footprint of more than 1.2 GB. As a result
this simulation is the most time consuming per iteration.

LHC. The simulation of the acceleration ramp of the LHC re-
quires 14M iterations with relatively fewer macro-particles. As part
of the study, beam losses are calculated by the stats() module.

FCC. The particularity of this case is the significant energy losses
due to synchrotron radiation requiring several sub-iterations over
one revolution period. To model the synchrotron radiation effect a
pseudo-random number generation (PRNG) function with a huge
repetition period is needed.

Table 1 summarizes the basic configuration of each testcase.
Each study requires typically scanning a large parameter space.
As a consequence, tens to hundreds or even thousands of runs are
needed for a complete beam dynamics study.

4 PERFORMANCE ANALYSIS AND
OPTIMIZATION

In this section we provide a straightforward guideline to perfor-
mance optimization adopted in the development of BLonD++. The
stages of the guideline are applicable to essentially any large-scale
scientific application. What needs to be tailored to the specific
case is the realization of each stage. The suggested methodology is
depicted in Fig. 2.

4.1 Moving to a C++ runtime
BLonD started originally as a pure python code, as python com-
bines rapid prototyping and development, ease-of-use, and object
oriented design principles. Moreover, it can be easily extended by
third-party libraries that contain a rich collection of mathemati-
cal tools [14, 24]. Figure 3 summarizes the run-time breakdown
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Figure 2: Performance optimization methodology.
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Figure 3: Run-time breakdown of the four target testcases
with the initial, python-only BLonD version. The seven
tagged methods are responsible for 99% of the run-time on
average.

of the four targeted testcases. The seven tagged methods, namely
LIkick(), drift(), hist(), fft(), stats(), SR() and kick() ag-
gregate 99% of the simulation time. Thus, for the rest of the paper
these seven methods will be referred to as benchmarks and the
overall performance of BLonD will be improved by optimizing each
benchmark individually or collectively whenever possible.

As a first approach to reduce the run-time, the selected bench-
marks were ported to C++; a programming language well-suited for
performance-critical applications. To interface the existing Python
code with the C++ extensions, the C++ sources are compiled into a
shared library which is exposed to Python via the ctypes module.
This hybrid implementation combines the best of both worlds; the
usability of Python in the front-end and the efficiency of C++ in
the compute intensive back-end.

A noticeable speedup was achieved by porting the computation-
ally intensive core to C++ and is reported in Fig. 4. The first bar of
every group, shows the overall speedup of the testcase specified
in the x-axis and the rest bars of every group show the speedup of
each individual benchmark in that testcase. The run-time has been
reduced by 3.3× up-to 12.5× or 7.5× on average. The SR() method
of the FCC testcase used the Boost library [19] for the PRNG as it
was noticed at this early stage that the STD library PRNGs were
lacking in performance. The fft() benchmark has not been opti-
mized with respect to the python-only version as at that moment,
fft() was allocating a very slight percentage of the run-time.

4.2 Introduction to TMAM
In this sub-section, we provide a brief overview of the Top-down
Micro-architecture Analysis Method (TMAM) [26]. TMAM is used
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Figure 4: Per testcase and per-benchmark speedup of the
first BLonD++ revision compared to the initial python-only
version.

to identify performance limitations of software in modern, out-of-
order (O3) processors. TMAM divides the total number of available
processor pipeline slots into four categories:

Bad Speculation denotes slots wasted due to all aspects of in-
correct speculations like mis-predicted branches.

Retiring denotes slots utilized by “useful operations”. Ideally,
all slots should be attributed here. A high retiring fraction does not
necessary mean that there is no room for improvement.

Front-End Bound denotes stalled slots because the pipeline’s
front-end under-supplies the back-end. The front-end is the portion
of the pipeline responsible for fetching the next instruction from
the ICache and decoding it into micro-operations to be executed
by the back-end.

Back-End Bound denotes stalled slots due to lack of resources
to accept new operations. It is further divided into:Memory bound
which reflects execution stalls due to the cache and memory sub-
systems, and Core bound which reflects either pressure on the
execution units or lack of ILP.

The advantages of TMAM compared to other approaches are
that TMAM is generic enough to be applied to any modern O3
processor, it induces a low-cost time overhead, and it offers clear
insights on performance bottlenecks.

4.3 Identification & mitigation of performance
limitations

In Section 4.1, a compelling speedup was reported by porting the
computation core of the BLonD code to C++. To go even further,
we need to identify the performance limitations of the new code.
In this section, the TMAM analysis is applied to the targeted test-
cases in order to better understand and eventually tackle the micro-
architectural bottlenecks of the BLonD suite.

To reproduce the TMAM break down described in Section 4.2, a
collection of approximately 90 hardware counters is needed. To fa-
cilitate the automation of the collection process, the command-line
interface of the Intel VTune Amplifier [3] was used. The Instrumen-
tation and Tracing Technology (ITT) API [5] was utilized to localize
the event collection around the regions of interest as well as enable
a more fine-grained, per-benchmark event grouping. Finally, after
the collection and grouping of the events was completed, the formu-
las suggested by TMAMwere used to breakdown the total available
processor pipeline slots into the following categories: front-end
bound (FEB), bad speculation (BS), retiring (RET), core bound (CB)
and memory bound (MB).
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Figure 5: Breakdown of available processor pipeline slots according to TMAM for the four targeted testcases.

Figure 5 shows this breakdown for each of the targeted testcases
displaying the percentage of the total available pipeline slots dedi-
cated to each of the abovementioned categories on a per-benchmark
granularity. The bars on the left each plot show the time contribu-
tion of the considered benchmarks to the run-time. Based on Fig. 5,
the following five performance inefficiencies were identified.

4.3.1 Core-bounded LIkick(). The LIkick() benchmark is in
overall responsible for a big portion of wasted cycles due to core
related stalls. Core-related stalls are usually caused by sequences
of dependent instructions or unbalanced use of the execution units
that leads to instruction serialization and ILP deterioration. Fur-
thermore, LIkick() contributes significantly to the retiring part.
As mentioned in Sec. 4.2, a high retiring percentage does not neces-
sarily mean that there is no space for improvement. In particular,
vectorization is a technique that lets more operations to be executed
by a single instruction, thus decreasing the retiring percentage and
speeding up the execution at the same time.

The inefficiency spotted in LIkick() was tackled in two phases.
The LIkick() function computes the energy transferred to each
macro-particle, every time the beam passes through an acceleration
cavity. At first, it was noticed that a portion of the main computa-
tion of LIkick() was independent of the particle index and was
determined only by the particle distribution bin to which the par-
ticle belonged to. As a result, two helper arrays of a size equal to
the number of bins (∼ 103) were pre-calculated and then used as
look-up tables in the main loop (∼ 106iterations) saving expensive
computations. Furthermore, the main loop was unrolled to enable
partial vectorization.

4.3.2 Memory-bounded drift(). The second identified issue
is related to the drift() benchmark. Figure 6 shows that drift()
suffers from frequent memory stalls. To mitigate this pathogenic
behavior, we noticed that the calculation of drift() and LIkick()
can be interleaved. By doing so, the memory loads are reduced
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Figure 6: TMAMbreakdown for the drift() benchmark. 68%
of total pipeline slots is wasted due tomemory-related stalls.
The input size was 1M particles.

roughly by 50% and therefore the pressure to thememory subsystem
is reduced.
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Figure 7: Comparison of STD and VDT libraries with the gcc
and icc compilers in kick(). The STD-icc configuration is on
average 6.4× faster than the STD-gcc configuration.

4.3.3 Inefficient kick() implementation. The third issue con-
cerns the kick() benchmark that dominates the run-time of the
PSB testcase. The most time consuming part of kick() is the calcu-
lation of the sin() function. In Fig. 7, the performance of kick()
is evaluated with the C++ Standard Library (STD) [15] and the
VDT Library [18] compiled with the gcc and icc compilers. The
values on the y-axis are normalized to the STD-gcc configuration.
The fastest configuration appears to be the use of the STD library
compiled with the gcc compiler which is on-average 6.4× faster
than the STD-gcc configuration.
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Figure 8: Benchmarking the STD, Boost and MKL libraries
for the PRNGmethods in the SR() function. TheMKL PRNG
method is on average 11.4× faster than the STD counterpart.

4.3.4 Inefficient SR() implementation. The SR() benchmark is
responsible for the fourth bottleneck. In the FCC testcase, SR()
dominates in the RET, FEB, BS categories and the run-time. The
most time-consuming task of the SR() benchmark is the pseudo-
random number generation (PRNG). In Fig. 8, the performance of
three different PRNG libraries is evaluated: STD [15], Boost [19]
and Intel MKL [4]. The latter is the most efficient and outperforms
the STD library by 11.4× on average across a range of input sizes.

0 1 2 3 4 5 6 7 8
% Run-time

py
C++ PhaseLoop RFVCalc rest

Figure 9: Breakdown of the “other” part of the LHC testcase
before and after porting PhaseLoop() and RFVCalc() to C++.

4.3.5 Large contribution of “other” in LHC testcase. The final
underlined limitation appears in the LHC testcase. The “other” part,
which represents the code that does not belong to any of the con-
sidered benchmarks, allocates 8% of the run-time. While this might
seem as a minor issue, it is crucial to reduce the contribution of
the serial parts as they greatly affect the overall scalability of the
code. With detailed profiling, we discovered the two most signif-
icant methods of the “other” part: RFVCalc() and PhaseLoop().
By porting them to C++ the contribution of the “other” part to the
overall run-time dropped to 3.5%. Figure 9 summarizes the run-time
breakdown of the “other” part in the LHC testcase, before and after
the porting to C++.

Tackling the issues mentioned above with the suggested tech-
niques lead to the next generation beam longitudinal dynamics
simulator suite, BLonD++. The evaluation of the single-core perfor-
mance of BLonD++ is given in Section 5.2.

4.4 Code parallelization
To anticipate forthcoming computational challenges in the field
of beam dynamics, the seven considered benchmarks were paral-
lelized.

The framework used to express parallelism is the OpenMP [8].
Simplicity, maturity, compiler support, and scalable performance
are some of the assets that made OpenMP the most popular shared-
memory parallelization framework. In general, most benchmarks
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Figure 10: Single core execution time evaluation of BLonD++
after mitigating the identified issues with TMAM.

were parallelized using the parallel loop pragmas. Some bench-
marks, like hist() were not inherently parallel as they need to up-
date shared data structures. In this case, to avoid atomic operations
or other means of synchronization, each thread computes a private
histogram and in the end the private histograms are reduced to a
global one. For the fft() benchmark, the multi-threaded version of
the FFTW library [11] was used. We performed a deep evaluation
and analysis of BLonD++ scalability, reported in Section 5.3.

5 EXPERIMENTAL EVALUATION
5.1 Experimental setup

Table 2: Hardware Set-up

Model Intel® Xeon® Haswell
E5-2683v3 @ 2.00GHz

CPU 2 nodes with 14 cores per node
2-way Hyper-Threading
total 28 cores/ 56 threads

Cache 32KB L1I and L1D per core
256KB L2 per core
35MB L3 shared per node

Memory 64 GB
Operating System CentOS Linux 7.4, kernel 3.10
Compiler gcc 5.3 & icc 18.0, compile flags:

-O3 -ffast-math -mtune=native

The proposed BLonD++ library is evaluated experimentally on a
NUMA, multi-core server platform. Table 2 summarizes the hard-
ware set-up. The Intel Turbo Boost technology and the hyper-
threading feature were disabled for stable and reproducible mea-
surements. The standard deviation of the reported results is ≈ 1%.

5.2 BLonD++ single-core performance
Figure 10 presents the speedup gained by mitigating the identified
bottlenecks described in section 4.2.

The Likick(), now includes drift() in all testcases except PSB,
has been improved by a factor of 2× to 3× in terms of run-time.
This is mainly the result of saving computations by utilizing the
look-up tables described in section 4.3, reducing memory loads by
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Figure 11: Single-core cumulative speedup of BLonD++ over
the initial BLonD version. BLonD++ demonstrates a 18×
speedup on average.

Table 3: Efficiency of BLonD++ scalability.

Testcase Serial% Efficiency %
4 14 28 threads

FCC 0.85 95 80 73
PSB 3.73 95 85 84
SPS 0.35 93 47 44
LHC 9.40 93 80 81

Mean 3.58 94 73 71

overlapping LIkick() with drift() and finally employing auto-
vectorization. The kick() benchmark that was dominating the
PSB testcase is 8× faster in the fully optimized version. In the
FCC testcase, the SR() has been improved by a factor of 3× due
to the use of the random number generation functions from the
MKL [4] library. Note that in the previous, un-optimized version,
the Boost [19] library was used and not the C++ STD [15] library. In
the fft() benchmark, the Scipy [14] FFTs have been replaced by the
more efficient FFTW [11] library. The fft() bench it demonstrates
a speedup of up to 3.3×.

In Fig. 11, the cumulative speedup of the final BLonD++ ver-
sion against the initial python-only version is presented. BLonD++
achieved a 18× speedup in the four representative testcases on aver-
age. This means that a previously day-long, single-core simulation,
can now be completed in 80 minutes while a week-long simulation
needs only 9h to complete. Furthermore, this dramatic reduction in
execution time has enabled the scientists using BLonD to simulate
scenarios that combine more complex physics phenomena with
finer resolution. For instance, in the SPS, modeling 144 bunches
was crucial to get more accurate predictions for the upgrade of the
machine, since bunches are coupled through intensity effects. This
was not possible with the initial BLonD version.

5.3 Scalability analysis
The dramatic single-core speedup reported in the previous sec-
tion is sufficient to enable studies of physics effects in deeper de-
tail that were previously unfeasible due to run-time limitations.
Nevertheless, as future challenges are anticipated, the considered
benchmarks were parallelized to provide even greater speedups.
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Figure 12: Scalability of the four realistic cases.

As mentioned in Section 4.3, OpenMP was used to express par-
allelism. The multi-threaded version of FFTW [11] was used in
the fft() benchmark. FFTW enables multi-threading only after
a certain threshold of input points. This is why the fft() bench-
mark shows scalable behavior only in the SPS testcase where the
problem size is large enough. The FFTW library also defines the
exact number of utilized threads depending on the input size.

Figure 12 summarizes the scalability analysis for the four se-
lected testcases. The top sub-plot of each sub-figure shows how
the contribution of each benchmark to the total execution time
changes with the increase of the thread count. The contribution of
the multi-threaded parts decreases with the increase of the threads
and correspondingly, the non-parallelized parts become more sig-
nificant as the thread count increases. This means that for a testcase
to be scalable as a whole, all of its subparts need to be sufficiently
scalable. The bottom sub-plot of each sub-figure shows the speedup
of each benchmark as well as the speedup of the whole testcase,
compared to the single threaded execution.

In general, most of the benchmarks demonstrate decent scala-
bility. However, not all testcases scale well as a whole. In the LHC
and PSB testcases the “other” part, dominates the run-time when
the thread count increases. The “other” part needs to be further
broken down into sub-parts, analyze them and explore new op-
timization opportunities. In the SPS testcase, LIkick() does not
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demonstrate a very scalable behavior. This is mainly due to the
big input size which requires more than 1.2 GB of memory. As the
thread count increases, the overall performance is limited by the
memory bandwidth. This explains the speedup jump from 14 to 28
threads. The first 14 threads are allocated in the first node to avoid
expensive inter-thread communication via the main memory. The
second group of threads is scheduled in the second node, which
unlocks an extra 35MB of L3 cache. As a result, the performance
of this testcase scales ideally from 14 to 28 threads. Finally, the
FCC testcase demonstrated the most scalable behavior among the
testcases. Tackling the above mentioned issues is on-going work.

Table 3 shows how efficiently each testcase scales. The “Serial%”
column shows what percentage of the run-time is allocated by serial
code. The efficiency has been calculated as the ratio of the measured
speedup to the theoretical speedup according to Amdahl’s law [6].
All the reported values are percentages. We show the efficiency for
four, 14 and 28 threads. Four threads is a typical number of cores that
a desktop computer has, 14 is the number of cores in each node of
the platform used for the experimental evaluation and 28 is the total
number of available cores in the experimental platform. On aver-
age, BLonD++ achieved near-optimal, 94% scalability efficiency with
four threads. This indicates that the multi-threaded benchmarks
are indeed efficiently parallelized, successfully avoiding harmful
effects of synchronization and load imbalance. Moreover BLonD++
achieved over 70% efficiency with 14 and 28 cores which is accept-
able considering that 14-cores is the total number of cores per slot
and 28-cores is the total number of cores in the system. Nonetheless,
there is still room for improvement.

6 CONCLUSION
This paper introduced for the first time the BLonD simulation suite
from a computer engineering point of view. After setting-up the
essential background, an in-depth micro-architectural analysis of
BLonD is provided. Based on the micro-architectural profile, the
major limitations of BLonD were underlined. A series of techniques
like vectorization, code overlapping to reduce memory loads, em-
ployment of look-up tables to save computations, use of high perfor-
mance scientific libraries, and other compiler-related optimizations
were suggested to mitigate the identified bottlenecks.

The implementation of these techniques led to BLonD++, a hy-
brid Python-C++ code that combines the ease-of-use of Python
in the front-end with the efficiency of a compiled language like
C++ in the back-end. The single-core performance of BLonD++ was
evaluated in a multi-core server platform and demonstrated an up
to 23× speedup in run-time. Furthermore, the scalability analysis
of BLonD++ showed promising results.

In particular, a previously day-long simulation can now be com-
pleted in 80 minutes while a week-long simulation needs only 9h
to complete, without even employing thread parallelism. This dra-
matic reduction in execution time has enabled the scientists using
BLonD to simulate scenarios that combine more complex physics
phenomena with finer resolution. These complex, accurate and fast
simulations in the field of beam dynamics are essential to overcome
the current limitations, plan the up-coming particle accelerators’
upgrades and design future machines that will help science advance
even further.
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