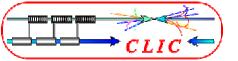
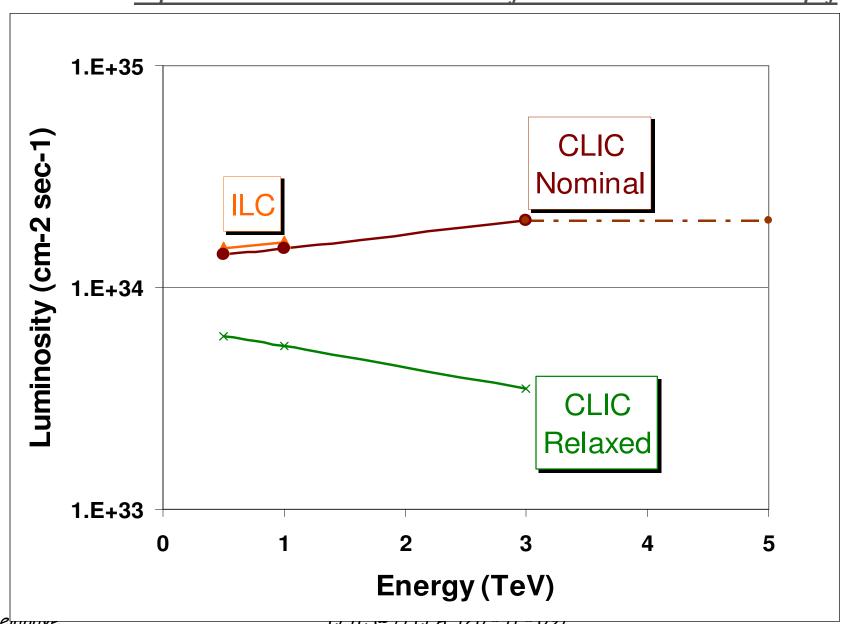


CLIC R&D: Status and Plans

Progress from last PECFA presentation(Nov 2007)
CLIC feasibility issues
R&D program, status and plans
Preparation of Conceptual Design Report
CLIC collaborations & collaboration with ILC
Conclusion


http://clic-study.web.cern.ch/CLIC-Study/

J.P.Delahaye for the CLIC Collaboration


Towards CLIC Conceptual Design

- Demonstrate feasibility of CLIC technology
 - Address all feasibility issues
- Design of a linear Collider based on CLIC technology http://clic-study.web.cern.ch/CLIC-Study/Design.htm
- CLIC Physics study and detector developmen L.Linssen http://clic-meeting.web.cern.ch/clic-meeting/CLIC Phy Study Website/det LCD project
- Estimation of its cost (capital investment & operation)
- Conceptual Design Report (CDR) by end 2010 including
 - Physics, Accelerator and Detectors
 - R&D on critical issues and results of feasibility study,
 - Preliminary performance and cost estimation

CLIC Parameters Range

http://cdsweb.cern.ch/record/1132079/files/CERN-OPEN-2008-021.pdf

J.P.Deranaye

CLIC main parameters

http://cdsweb.cern.ch/record/1132079?ln=fr http://clic-meeting.web.cern.ch/clic-meeting/clictable2007.html

		and the state of t		
Center-of-mass energy	CLIC 5	00 GeV	CL	IC 3 TeV
Beam parameters	Relaxed	Nominal	Relaxed	Nominal
Accelerating structure	50	2		G
Total (Peak 1%) luminosity	8.8(5.8)·10 ³³	2.3(1.4)·10 ³⁴	7.3(3.5)·10 ³³	5.9(2.0)·10 ³⁴
Repetition rate (Hz)			50	
Loaded accel. gradient MV/m	8	0		100
Main linac RF frequency GHz			12	
Bunch charge10 ⁹	6.	8		3.72
Bunch separation (ns)			0.5	
Beam pulse duration (ns)	17	7		156
Beam power/beam MWatts	4.	9		14
Hor./vert. norm. emitt (10 ⁻⁶ /10 ⁻⁹)	7.5/40	4.8/25	7.5/40	0.66/20
Hor/Vert FF focusing (mm)	4/0.4	4/0.1	4/0.4	4/0.1
Hor./vert. IP beam size (nm)	248 / 5.7	202 / 2.3	101/3.3	40/1
Hadronic events/crossing at IP	0.07	0.19	0.28	2.7
Coherent pairs at IP	10	100	2.5 107	3.8 108
BDS length (km)	1.5	37		2.75
Total site length km	13	.0		48.3
Wall plug to beam transfert eff	7.5	%		6.8%
Total power consumption MW	129	0.4		415

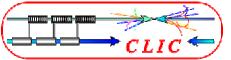
CLIC critical issues R&D strategy and schedule

Overall list of critical issues (Risk Register) under: https://edms.cern.ch/nav/CERN-0000060014/AB-003093

Issues classified in three categories:

- CLIC design and technology feasibility
 Fully addressed by 2010 by specific R&D with results in Conceptual Design Report (CDR) with Preliminary Performance & Cost
- Performance and/or Cost
 Both being addressed now by specific R&D to be completed before 2016 with results in Technical Design

Report (TDR) with Consolidated Performance & Cost



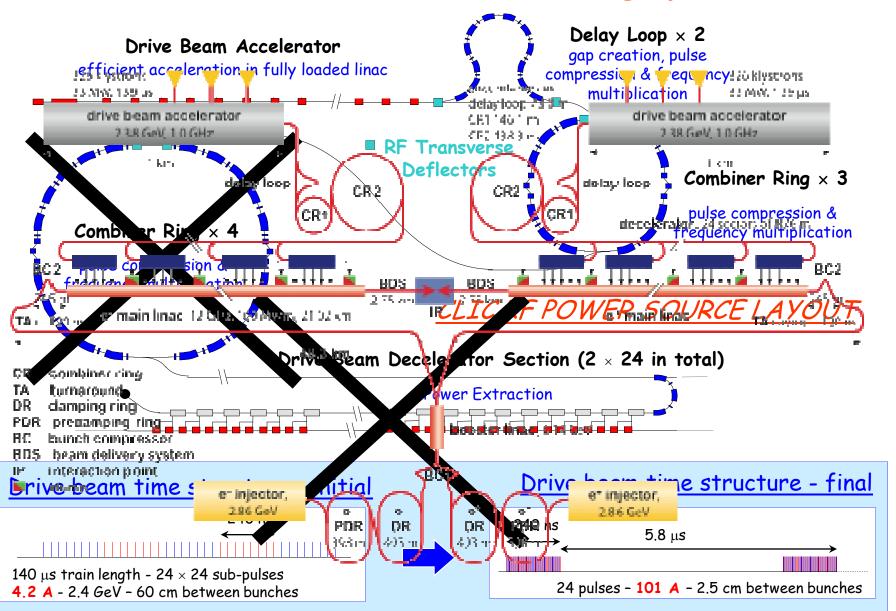
10 CLIC Feasibility Issues

- Two Beam Acceleration:
 - Drive beam generation
 - Beam Driven RF power generation
 - Two Beam Module
- RF Structures*
 - Accelerating Structures (CAS)
 - Power Production Structures (PETS)
- Ultra low beam emittance and beam sizes
 - Emittance preservation during generation, acceleration and focusing
 - Alignment and stabilisation
- Detector

- CLIC ILC Common Issues
 CLIC more challenging requirements
- Adaptation to short interval between bunches
- Adaptation to large background at high beam collision energy
- Operation and Machine Protection System (MPS)

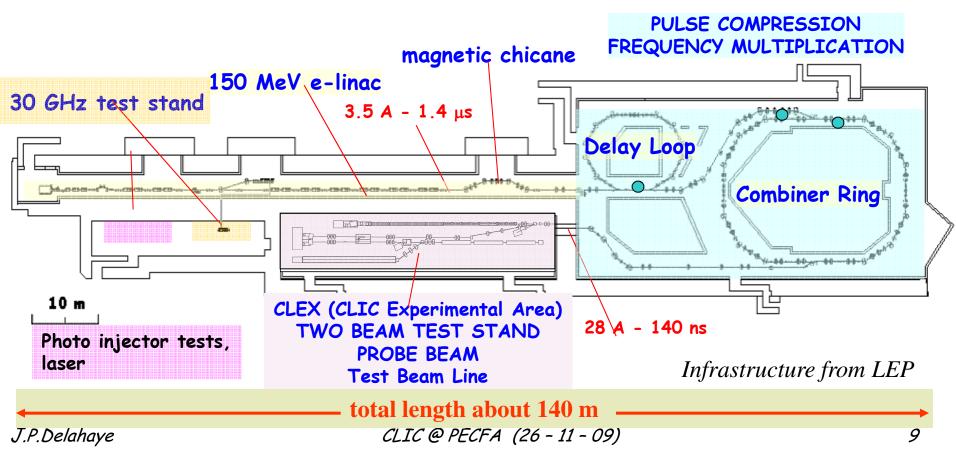
CLIC specific

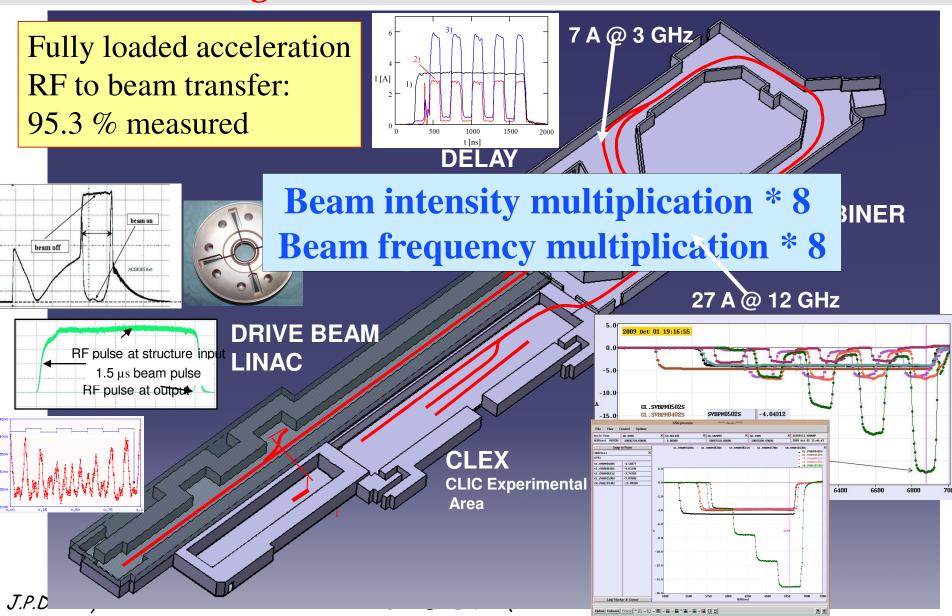
CLIC feasibility issues


System	Item	Parameter Issue	Test facility Common with ILC
Two Beam	Drive beam generation	100 A peak current / 590 μC total charge 12 GHz bunch repetition freq. & 1 mm bunch length 0.2 degrees phase stability at 12 GHz (0.1 psec) 7.5 10 ⁻⁴ intensity stability	CTF3 CTF3/TBL Simulations X-FEL, LCLS
Acceleration Beam Driven RF power generation		90% conversion efficiency from drive beam to RF Large drive beam momentum RF pulse shape accuracy < 0.1%	CTF3/TBL Simulations
	Two beam module	Two Beam Acceleration at nominal parameters	CTF2&3/TBTS
RF	Accelerating Structures (CAS)	100 MV/m 240 RF pulse length with flat top 160ns breakdown probability/pulse < 3·10-7 /m	CTF2&3 SLAC/NLCTA&NASTA KEK/NEXTEF
Structures Power Production Structures (PETS)		132 MW total flat-top pulse length 240/160 ns breakdown probability/pulse < 1·10-7 /m On/Off/adjust capability	CTF3 CTF3/TBTS & TBL SLAC/ASTA
Ultra low beam emittance	Emittance preservation	during generation, acceleration and focusing: Emittances (nm): H= 600, V=5 Absolute blow-up (nm): H=160, V=15	ATF, SLS, NSLSII Simulations LCLS, SCSS
& sizes	Alignment and stabilisation	Main Linac : 1 nm vert. above 1 Hz BDS: 0.15 to 0.5 nm above 4 Hz	CESRTA ATF2
Detector	Short interval between bunches	Time stamping: 0.5 nsec bunch interval	Simulations
Background at high beam collision energy		Beam-Beam background: 3.8 108 coherent/1e5 incoherent e+/e- pairs, Hadrons, High muon flux	Simulations
_	on and Machine n System (MPS)	drive beam power of 72 MW @ 2.4 GeV main beam power of 13 MW @ 1.5 TeV MTBF, MTTR	CTF3 Simulations

J.P.Delahaye

ČLIC @ PECFA (26 - 11 - 09)


CLIC Drive Bellen Leryonttion

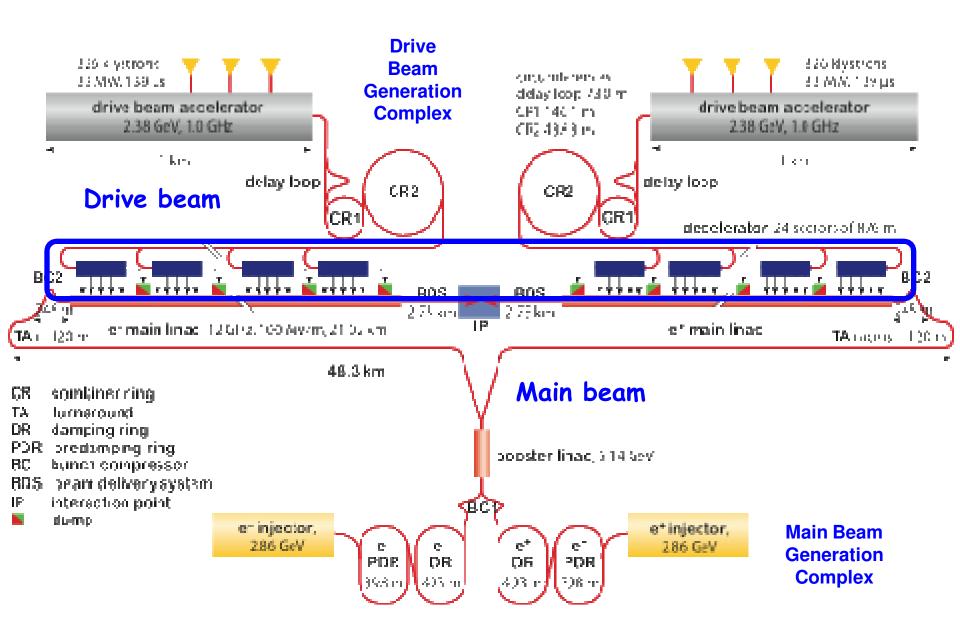


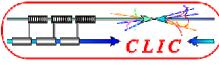
Addressing all major CLIC technology key issues in CLIC Test Facility (CTF3)

- Demonstrate Drive Beam generation
 (fully loaded acceleration, beam intensity and bunch frequency multiplication x8)
- Demonstrate RF Power Production and test Power Structures
- Demonstrate Two Beam Acceleration and test Accelerating Structures

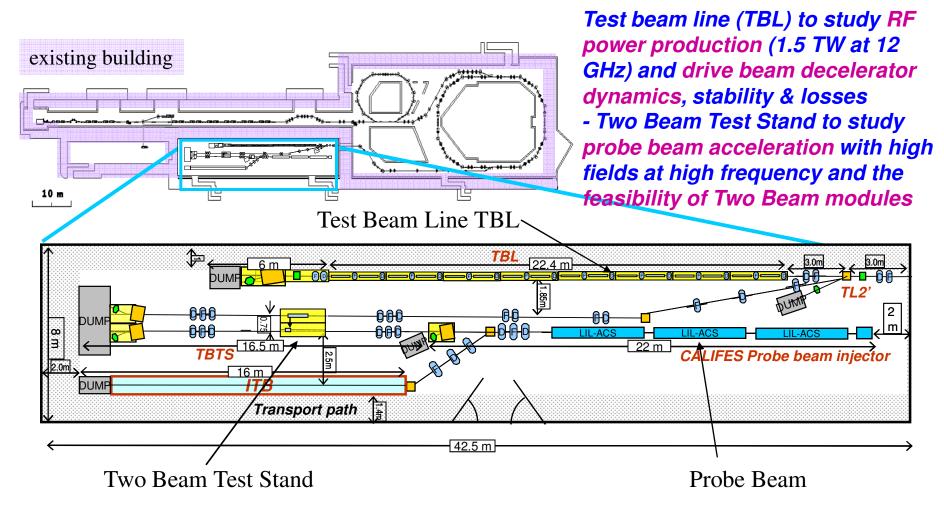
CTF3 completed, operating 10 months/year, under commissioning:Drive Beam Generation demonstrated

Drive Beam Generation Feasibility


Feasibility	Unit	Nominal	Feasibility	Achieved	How	Feasibili
Issue			Target			ty
		@ 2 GeV	@ 0.2Gev	@0.2 GeV		
Fully loaded accel effic	%	96	95	95	CTF3	\checkmark
Freq&Current multipl		2*3*4	2*4	2*4	CTF3	
12 GHz beam current	A	4.5*24=100	3.75*8=30	3.6*8=27	CTF3	\checkmark
12 GHz pulse length	nsec	240	140	140	CTF3	\checkmark
Timing stability	psec	0.1 psec	?	?	XFEL	-
Intensity stability	10-4	7.5	30	30 @ * 4	CTF3	*4


Drive beam generation feasibility demonstrated

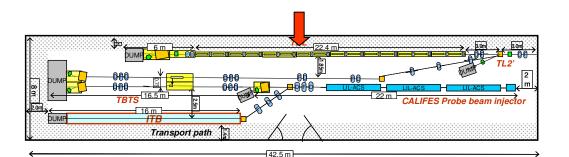
- Intensity stability still to be improved
- Timing stability to be addressed (XFEL collab)



CLIC - Power Generation

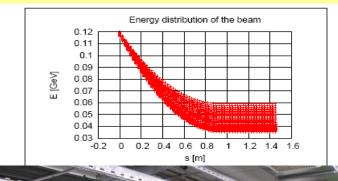


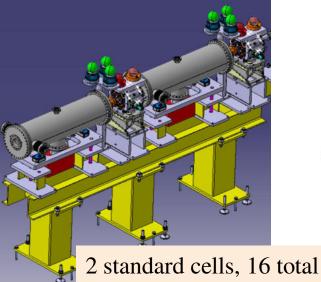
CLIC CTF3/CLEX (CLIC Experimental Area)

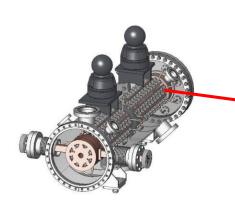


Construction during 2006/beg 2007 installation of equipment from 2007 - 2009

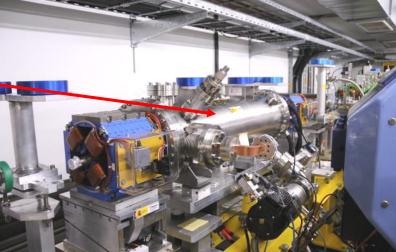
Beam in CLEX from June 2008 onwards


Test Beam Line (TBL)

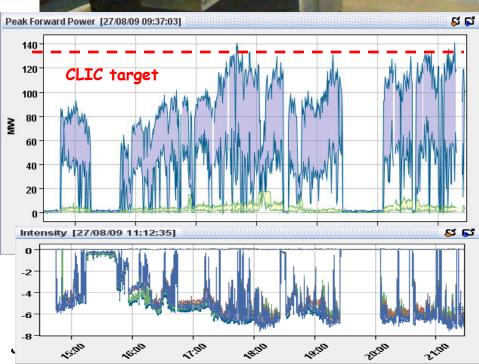



PETS design

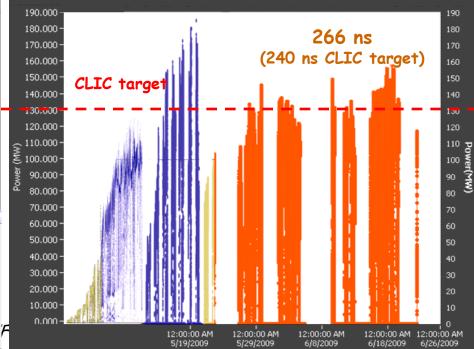
5 MV/m deceleration (35 A)
135 MV output Power

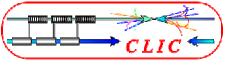

- High energy-spread beam transport decelerate to 50 % beam energy
- Drive Beam stability
- Stability of RF power extraction total power in 16 PETS: 2.5 GW
- Alignment procedures


CLIC @ PECFA (26



Power Production Structure (PETS)


design, built @ CERN, power tests@CTF3,SLAC



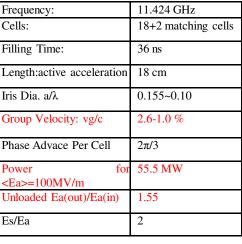
Drive beam driven @ CTF3

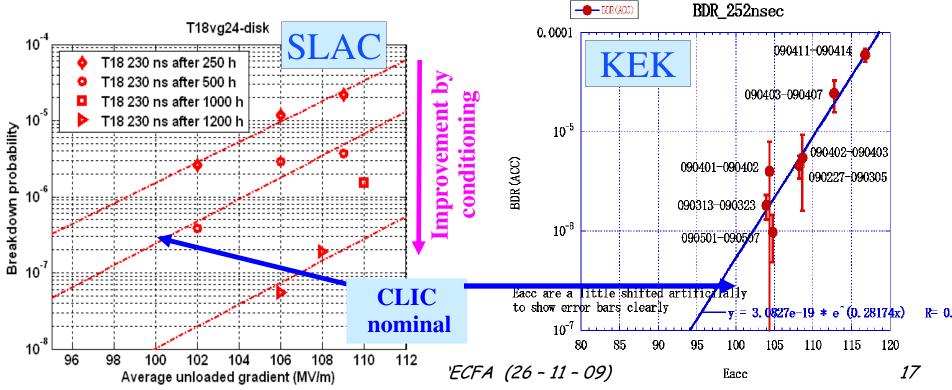
Beam driven RF Power Generation Feasibility

Feasibility	Unit	Nominal	Feasibility	Achieved	How	Feasibility
Issue			Target			
PETS RF Power	MW	132	132	130	TBTS/	\checkmark
PETS Pulse length	ns	240	240	>240	SLAC	
PETS Breakdown rate	/m	< 1.10-7	< 1·10-7	?	TBL	under cond.
PETS ON/OFF		@ 50Hz	@ low rep	-	CTF3	Being built
Drive beam to RF effic.	%	90%	50%	-	CTF3	TBL being
Drive mom. spread	%	90%	50%		CTF3	installed
RF pulse accuracy	%	< 0.1%	< 0.1%		CTF3	

- RF power generation by single PETS feasibility demonstrated except for breakdown rate.
- ON/OFF mechanism being built, still to be tested
- Efficient RF power extraction in multiple stages still to be addressed in TBL (being built for tests in 2010)

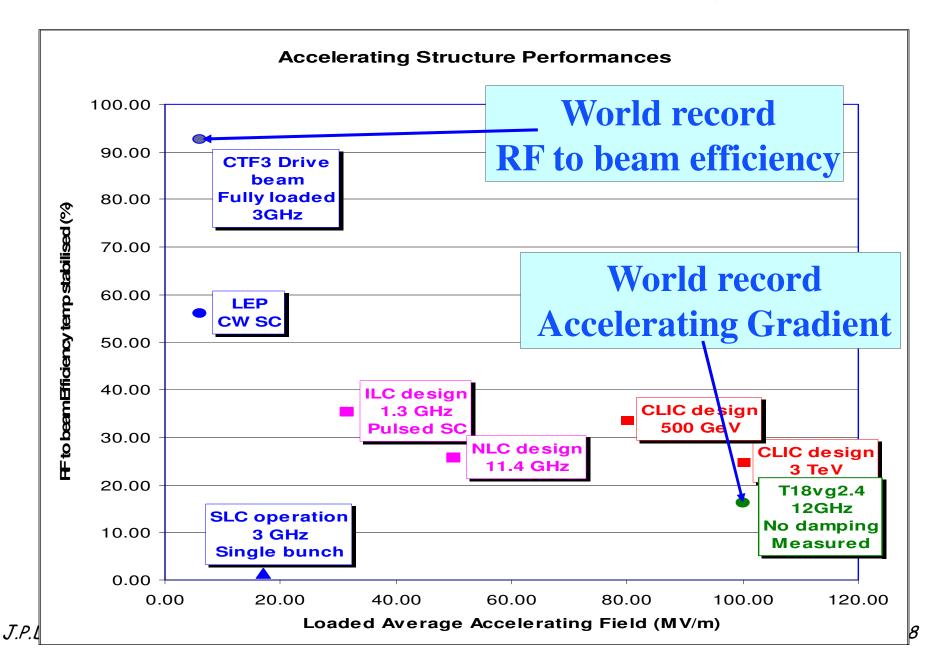
Accelerating Structure performance

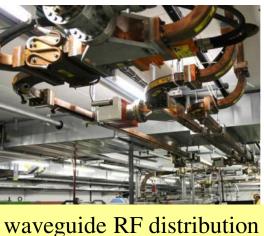

A shining example of successful collaboration: CERN-KEK-SLAC

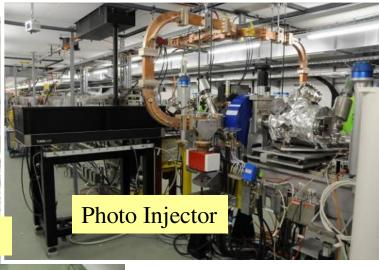

• 3 structures T18_VG2.4_disk (no damping)

CLIC <

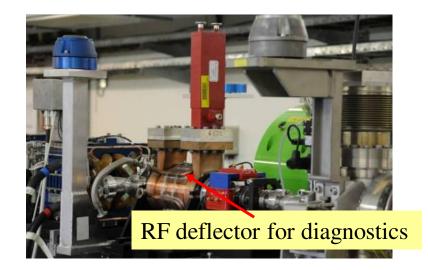
- RF design @ CERN
 Fabricated @ tested at
 SLAC and KEK
- Exceeded 100 MV/m at nominal breakdown rate







Accelerating Structure Performances

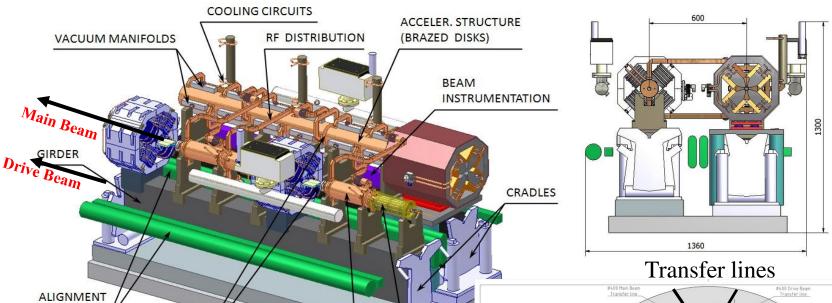

Probe Beam Generation in CTF3/CLEX (Califes)

Klystron and BOC



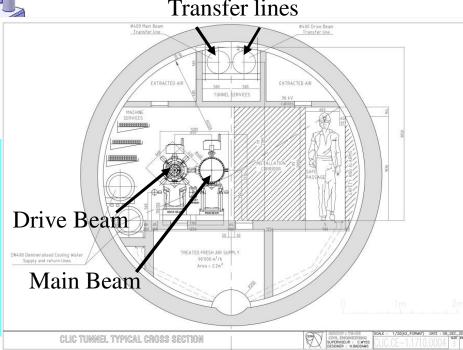
Two Beam Test Stand (TBTS) in CTF3/CLEX

All hardware installed!
Commissioning with beam ongoing
Beam in both lines up to end!


PETS (CERN) was installed in October, first accelerating structure in 2009

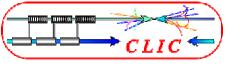
CLIC Two Beam Module

PETS (OCT

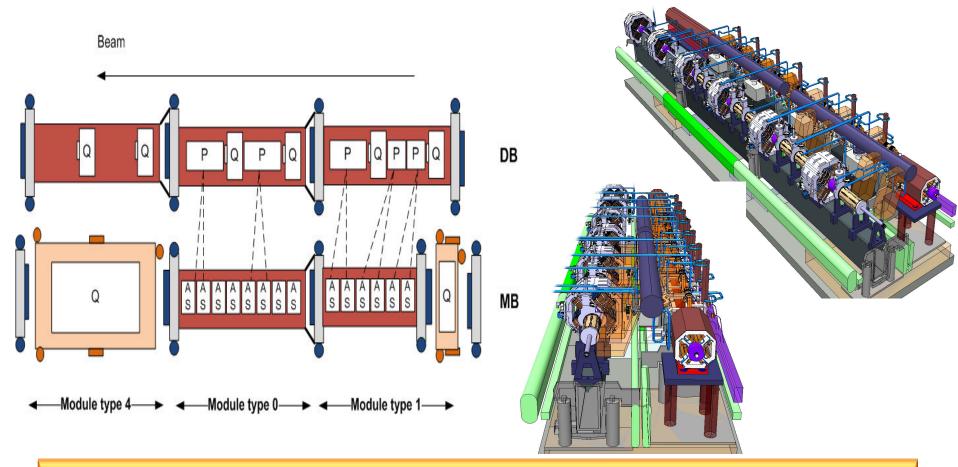

ULIL W PEUI

20760 modules (2 meters long)

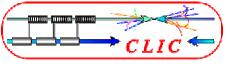
PETS (MINI-TANK)


71460 power production structures PETS (drive beam)

143010 accelerating structures (main beam)



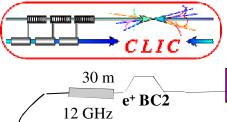
SYSTEM


INTERCONNECTIONS

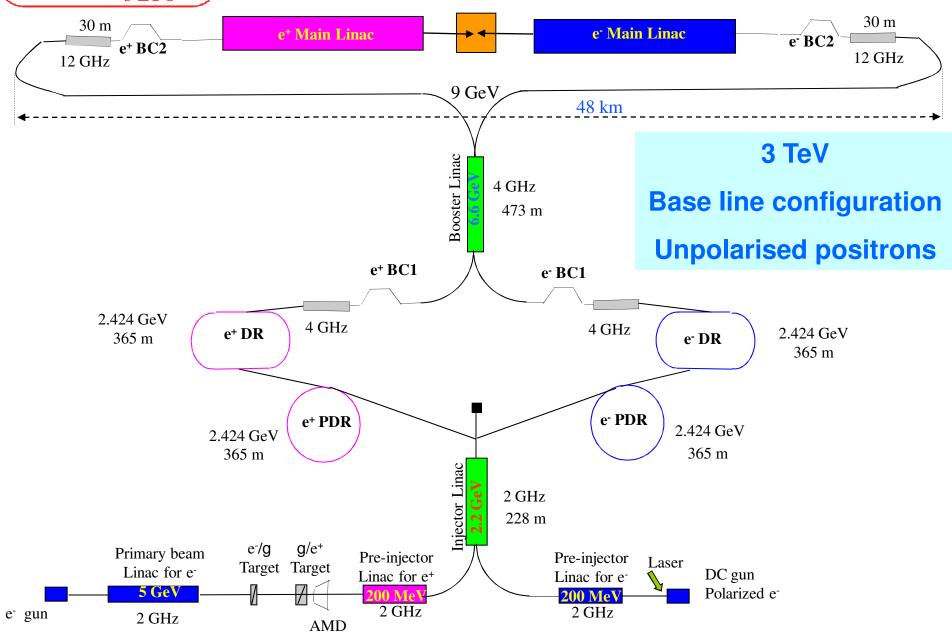
Two Beam Module tests in CTF3/CLEX

Test module representative of all module types integrating all various components: RF structures, quadrupoles, instrumentation, alignement, stabilisation, vacuum, etc....

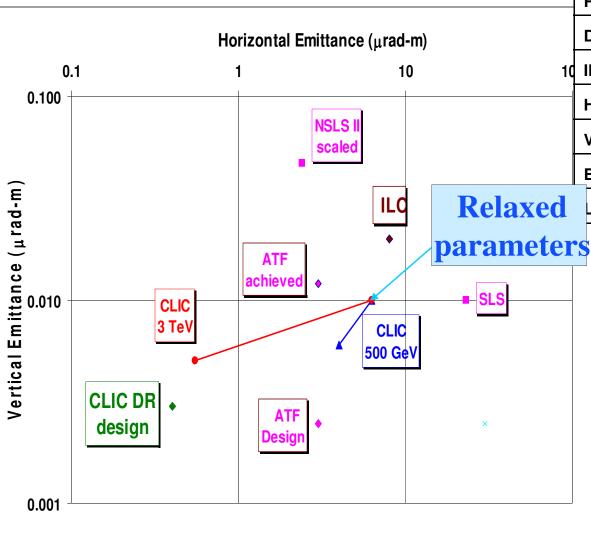
Two Beam Acceleration Feasibility


Feasibility Issue	Unit	Nominal	Feasibility Target	Achieved	How	Feasibility
Structure Acc field Structure Pulse length	MV/m ns	240	100 240	100 240	Test stand/	No Damping
Structure Breakd. rate Two Beam acceleration	/m MV/m	< 3·10-7 100	< 3·10-7 100	< 3.10-7	TBTS	Under
module	ns	240	240	-		constuction

Acceleration Structure with nominal parameters demonstrated without damping:


- RF to beam efficiency still to be improved.
- Structures with Damping being built still to be tested.

Two beam acceleration principle demonstrated in CTF2


• Two Beam Test Stand being built integrating (final) prototypes with power and beam tests in CTF3

The CLIC Main Beam Generation

Number of arc cells 100 **Number of wigglers** 76 RF voltage [MV] 6.5 1.87 / 0.94 Damping time x / s [ms] 10 IBS growth factor 2.0 Hor. Norm. Emittance [nm.rad] 480 Ver. Norm. Emittance [nm.rad] 4.7 **Bunch length [mm]** 1.4 Longitudinal emittance [eVm] 3700 straight section including 38 wigglers 96 m extraction regular FODO cells with wigglers dispersion suppressor & dispersion suppressor & injection/extraction region beta-matching section with two wigglers 27.53 m 48 TME cells

regular FODO cells with wigglers

96 m straight section including 38 wigglers 2.86

493.05

dispersion suppressor &

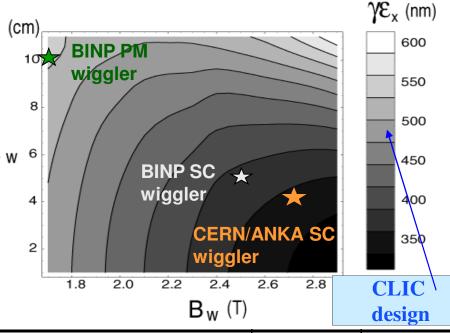
23

beta-matching section

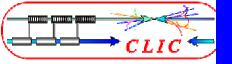
Energy [GeV]

48 TME cells

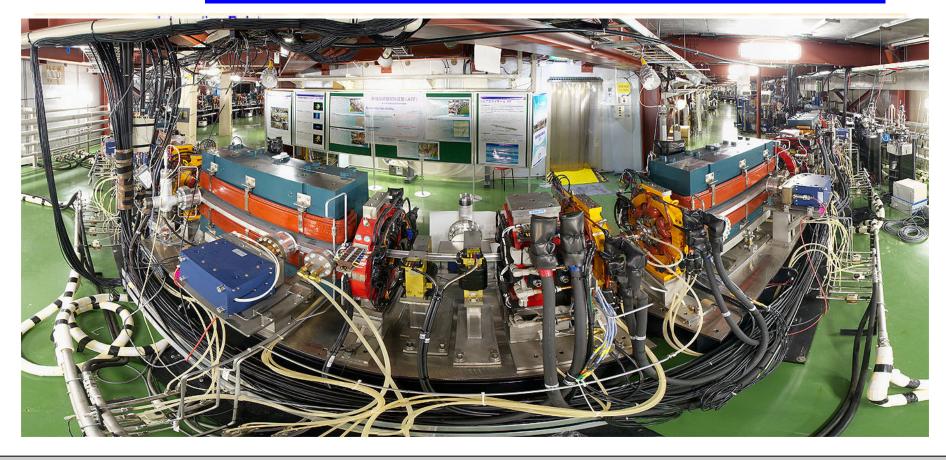
dispersion suppressor &


beta-matching section

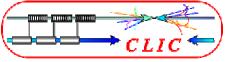
Circumference [m]



SC Wigglers


- Two 493m long rings of racetrack shape
 @ 2.86GeV
- Arcs filled with **TME cells** and straights w with **2m-long superconducting** damping wigglers (**2.8T**, 4**cm** period)
- IBS dominated beam emittance
- Issues to be addressed:
 - Lattice optimization (magnet design non-linear dynamics)
 - Superconducting wiggler design (NbTi/Nb₃Sn, radiation absorption)
 - Collective effects (e⁻ cloud, IBS)
 - RF system considerations
 - ILC/CLIC DR common issues
 - Pre-damping ring design (positron stacking)
- SC wiggler prototype fabrication in collaboration with BINP and future tests with beam in ANKA/Karlsruhe

Parameters	BINP	CERN/ Karlsruhe
B _{peak} [T]	2.5	2.8
λ_{W} [mm]	50	40
Beam aperture full gap [mm]	13	13
Conductor type	NbTi	NbSn ₃
Operating temperature [K]	4.2	4.2



KEK ATF

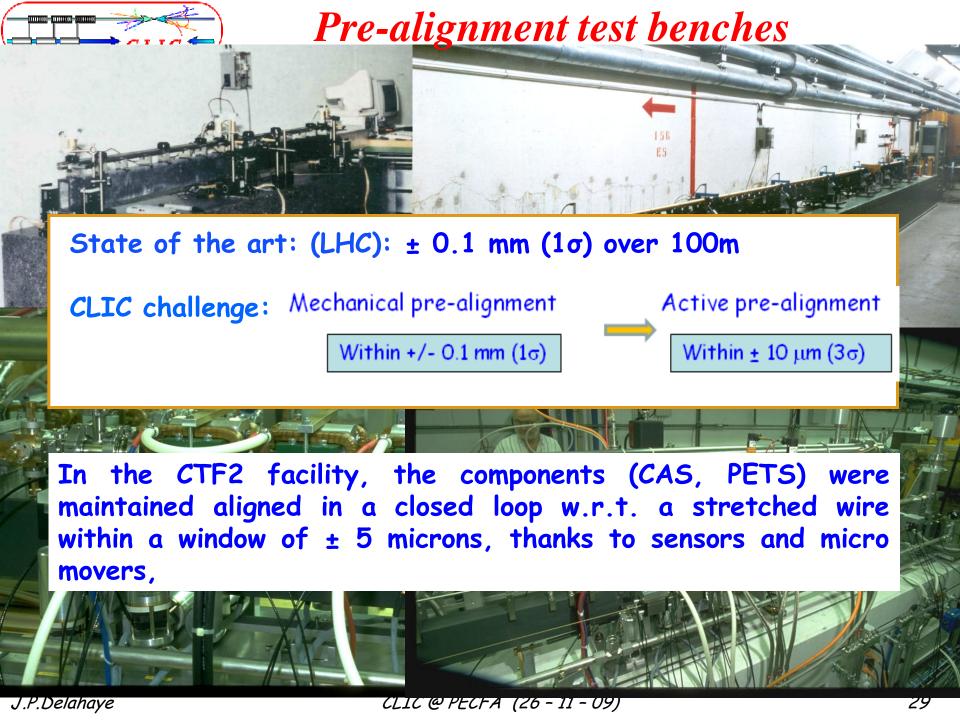
Addressing feasibility of small beam emittances by international collaboration hosted by KEK

Additional tests on Electron Clouds in CESRTA/Cornell in close collaboration with ILC

Beam emittance preservation Beam Dynamics, alignment and stability

Emittance blow-up from Damping Ring to BDS limited:

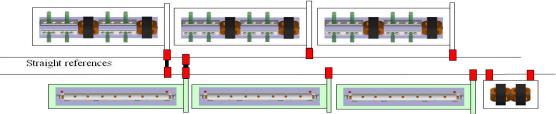
- in Horizontal to 30% from 500 nrad
 - in Vertical to 300% from 5 nrad

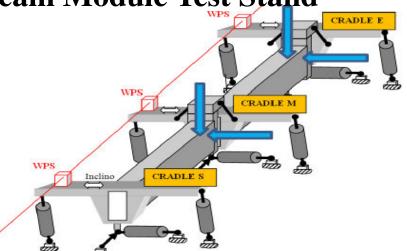

Alignment procedure based on:

- Accurate pre-alignment of beam line components: 15μm
- Beam-based alignment (5-10μm) using BPMs with good resolution (100nm)
- Alignment of accelerating structures to the beam using wake-monitors
- Tuning based on luminosity/beam size measurement with 2% resolution

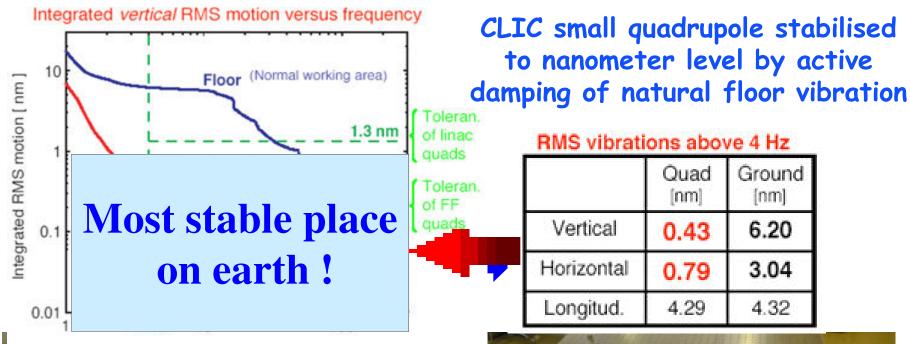
Beam stability by quadrupole stabilisation:0.2nm beam-beam stability@IP

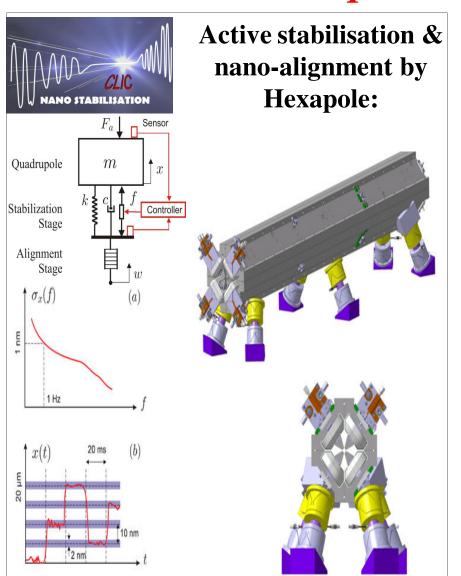
- quadrupole passive and active stabilisation
- beam feedback (pulse to pulse)
- Intrabeam feedback

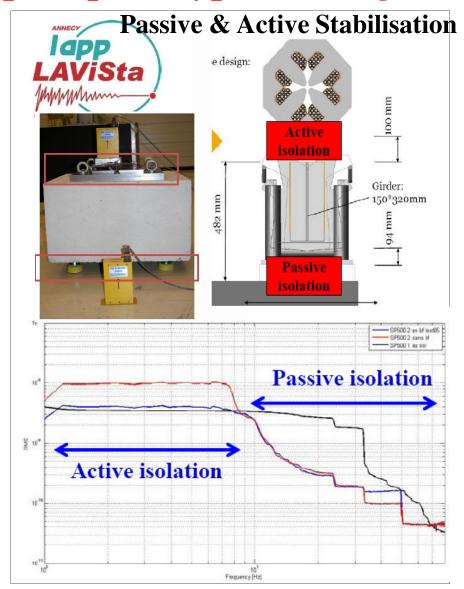

Quadrupole Magnets	Horizontal	Vertical
Linac (2600 quads)	14nm	1.3 nm
Final Focus (2quads)	4 nm	0.5 nm


Improved pre-alignment for Two-beam Module Integration

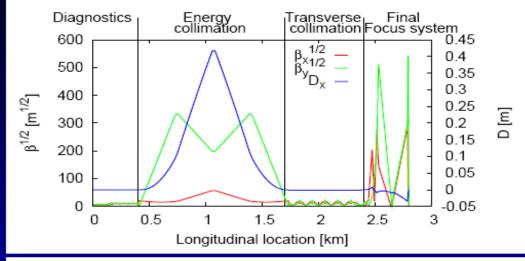
- ✓ Straight alignment reference over 20km by overlapping stretched wires
- ✓ References position measured with Wire Positioning Sensors (WPS)
- 200 m
- ✓ Girders pre-aligned ("articulation point") in respect with Wires
- ✓ Quadrupoles pre-aligned independently

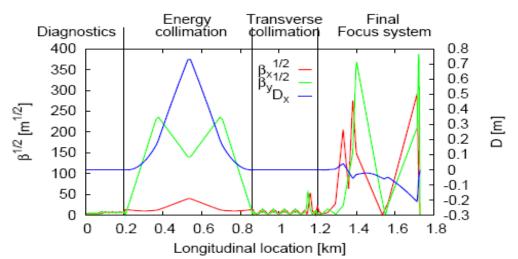

Validation & integration in Two Beam Module Test Stand


Nanometer Stabilisation



Stabilisation Test Stands (2 methods) with real quadrupole prototype (400 kg)

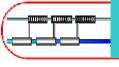



Focusing to nanometer beam sizes in Beam Delivery System (BDS)

The CLIC BDS

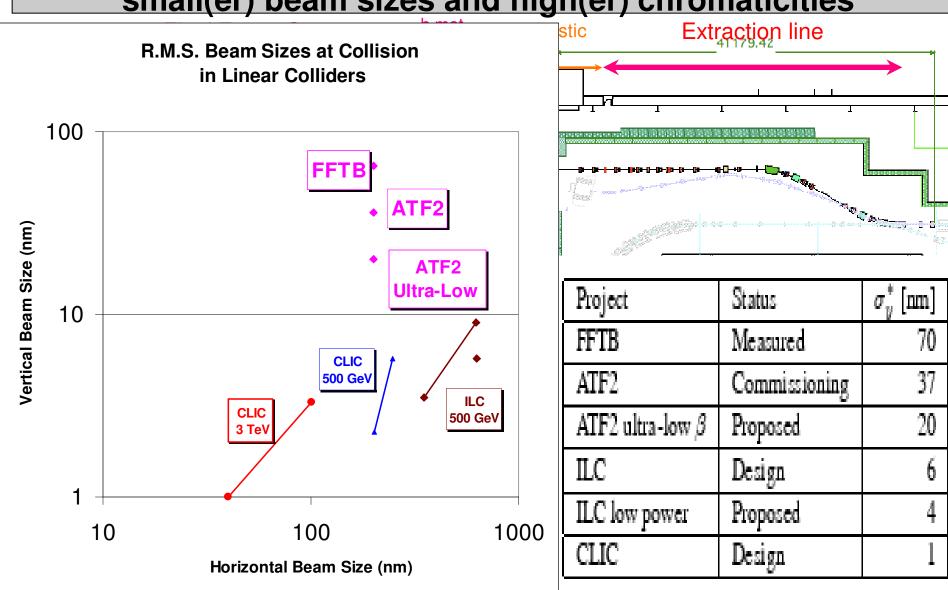
3 TeV

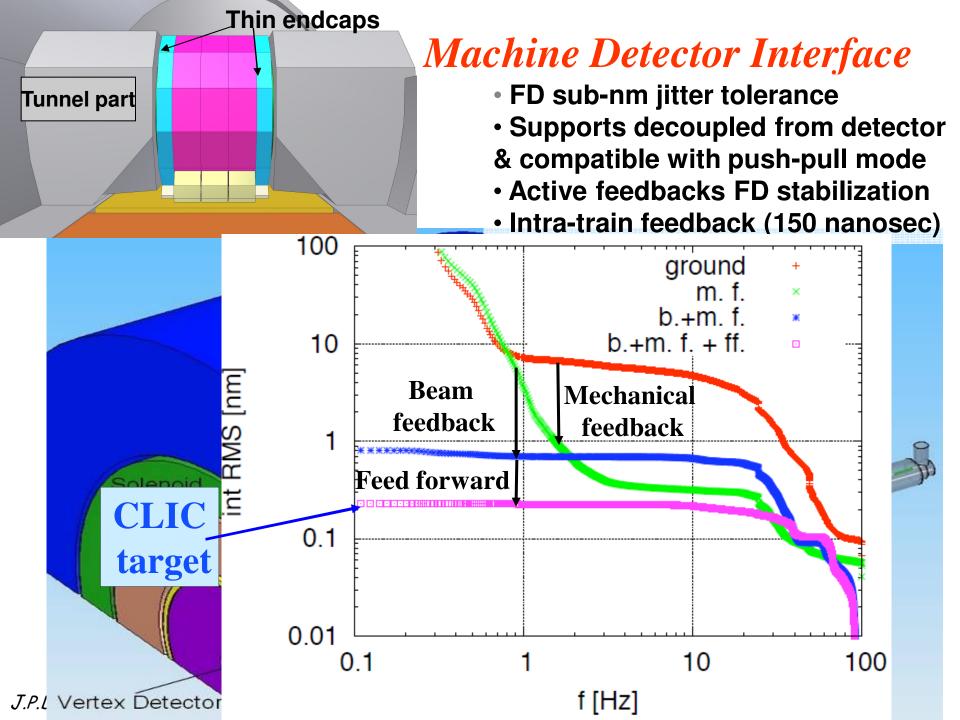
500 GeV

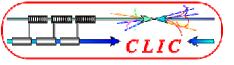

Rogelio

Tomás

García


System


p. 1/2



Nanometer beam sizes in KEK ATF2

Improved performances to address CLIC issues: small(er) beam sizes and high(er) chromaticities

Beam Emittances Preservation Feasibility

Feasibility	Unit	Nominal	Feasibility	Achieved	How	Feasibility
Issue			Target			
Emit blow-up H	Nm	H=160,	H=160,	H=160,	Simul	
Emit blow-up H	nm	V=15	V=15	V=15	ation	-
Dua Alianmant	miarons	15	10	10	Test	Module
Pre-Alignment	microns	15	10	(principle)	bench	integration
Stabilisation Vert:					Togt	Real quad
Quad Main Linac	nm>1 Hz	1.3	1	0.5	Test	and real
Final Doublet	nm>4 Hz	0.15 to 0.5	1	(principle)	bench	environment

- Ultra low beam emittances addressed in ATF2, SLS & NSLS2
- Emittance preservation by simulation bench-marked CTF3
- Principle of 10 micron Pre-Alignment demonstrated in CTF2
 Feasibility by upgraded method integrated Module Test Bench
- Principle of sub-nanometer active stabilisation demonstrated
 Feasibility of nm stabilisation with main linac quad prototype
 (400 kGs) addressed with tests in lab and integration in Two
 Beam Module

Application to realistic detector environment (adequate support)

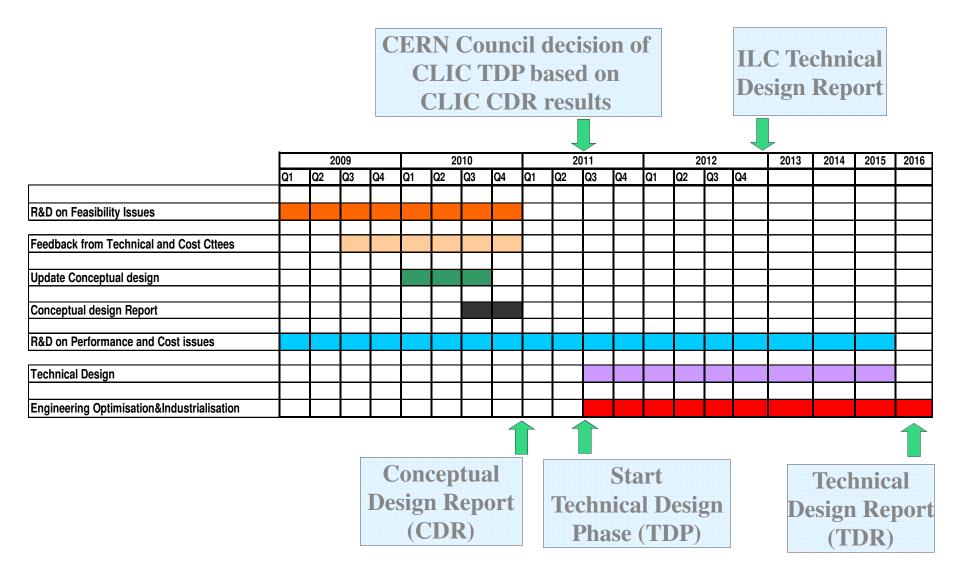
R&D on Detectors feasibility (next presentation by F.Richard)

Item	Parameter Issue	Test facility
		Common with ILC
Short interval between bunches	Time stamping: 0.5 nsec bunch interval	Simulations
Large background at high beam collision energy	Beam-Beam background: 3.8 10 ⁸ coherent/1e5 incoherent e+/e- pairs, Hadrons, High muon flux	Simulations

Addressed by new project on Linear Collider Detector R&D (L.Linssen)

Taking advantage of ILC detector concepts

Close collaboration with ILC


R&D on CLIC feasibility issue: Operation & Machine Protection System

System	Item	Parameter Issue	Test facility
			Common with ILC
•	on and Machine n System (MPS)	drive beam power of 72 MW @ 2.4 GeV main beam power of 13 MW @ 1.5 TeV MTBF, MTTR	CTF3 Simulations

Working Group just starting
Taking advantage of LHC experience!
Great synergy with ILC main beam (11MW @ 500GeV)
Common reflection on reliability & availability

CLIC Tentative Schedule

World-wide CLIC&CTF3 Collaboration CLIC http://clic-meeting.web.cern.ch/clic-meeting/CTF3_Coordination_Mtg/Table_MoU.htm

Aarhus University (Denmark)
Ankara University (Turkey)
Argonne National Laboratory (USA)
Athens University (Greece)
BINP (Russia)
CERN
CIEMAT (Spain)
Cockcroft Institute (UK)
Gazi Universities (Turkey)

Helsinki Institute of Physics (Finland)
IAP (Russia)
IAP NASU (Ukraine)
INFN / LNF (Italy)
Instituto de Fisica Corpuscular (Spain)
IRFU / Saclay (France)
Jefferson Lab (USA)
John Adams Institute (UK)

JINR (Russia)
Karlsruhe University (Germany)
KEK (Japan)
LAL / Orsay (France)
LAPP / ESIA (France)
NCP (Pakistan)
North-West. Univ. Illinois (USA)
Patras University (Greece)
Polytech. University of Catalonia (Spain)

PSI (Switzerland)
RAL (UK)
RRCAT / Indore (India)
SLAC (USA)
Thrace University (Greece)
Tsinghua University (China)
University of Oslo (Norway)
Uppsala University (Sweden)

• Common working groups on technical subjects with strong synergy between CLIC & ILC:

Physics & Detectors

Beam Delivery System (BDS) & Machine Detector Interface (MDI)

Civil Engineering & Conventional Facilities

Positron Generation

Damping Rings

Beam Dynamics

Cost & Schedule

• Recently extended with joint W.G. on Linear Collider General Issues (Accelerator & Detectors)

LC2010 ECFA workshop (Autumn 2010 @ CERN)

Joint CLIC & ILC

(Accelerator and Detectors)

Conclusion

- CLIC work program well established and (still) on schedule to address CLIC feasibility issues with preliminary performance and cost, but still a lot of work:
 - CTF3 completion (TBL..) and commissioning (consolidation)
 - RF structure: fabrication&test of fully equipped structures (Accel&PETS)
 - Technical feasibility issues: alignment, stabilisation, inst., etc.
- Promising key performances demonstrated
 - Challenging program and tight schedule!
- Conceptual Design Report by end 2010

Only possible due to outstanding contributions of CLIC Collaboration in the past, present and future

Close CLIC / ILC collaboration extremely beneficial for Linear Colliders in preparation for best possible facility adapted to Physics following LHC results

Spares

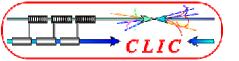
CLIC/CTF3 Multi-Lateral

Collaboration of Volunteer Institutes

34 Institutes involving 23 funding agencies from 19 countries Organized as a Physics Detector Collaboration

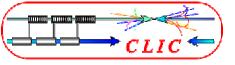
Collab. Board: Chair: M.Calvetti/INFN; Spokesperson: G.Geschonke/CERN MoU with addenda describing specific contribution (& resources)

http://clic-meeting.web.cern.ch/clic-meeting/CTF3_Coordination_Mtg/Table_MoU.htm

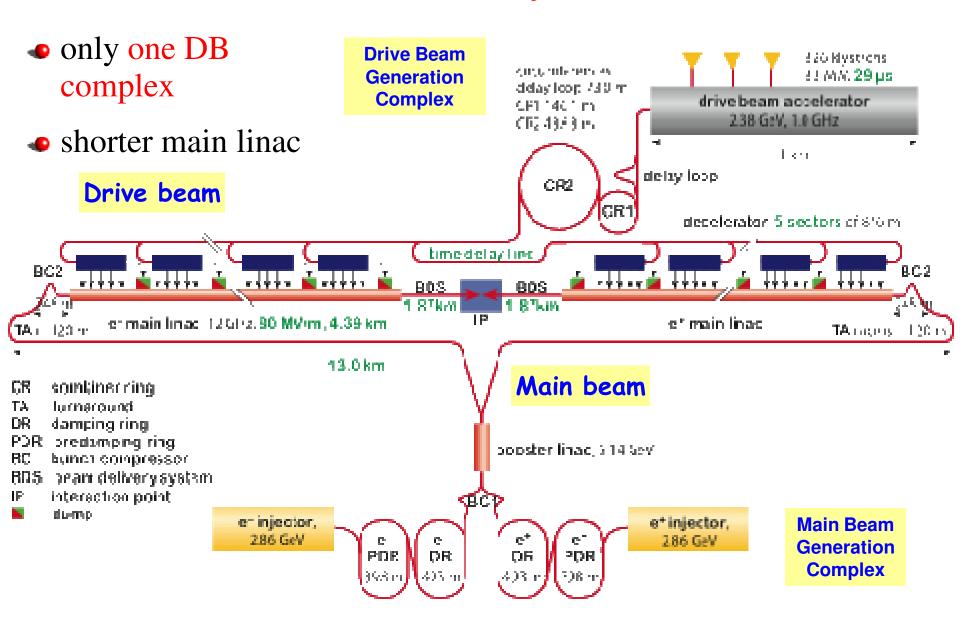

Members (full responsibility of work packages and providing corresponding resources):

- 20 CERN members with additional voluntary contributions:
 - CERN, Finland (HIP), Denmark (Aarhus), France (IRFU, LAL, LAPP), Germany (Karlsruhe), Greece (Athens, Patras, Thrace), Italy (LNF), Norway (Oslo U.), Spain (CIEMAT, UPC, IFIC), Sweden (Uppsala), Switzerland (PSI), UK (Cockcroft, JAI, RAL)
- 14 CERN non members with voluntary contributions:

China (Tsinghua Univ.) India (RRCAT), Japan (KEK), Pakistan (NCP), Russia (BINP, IAP, JINR), Turkey (Ankara U., Gazi U.), Ukraine (IAP), USA (ANL, JLAB, NWU, SLAC)

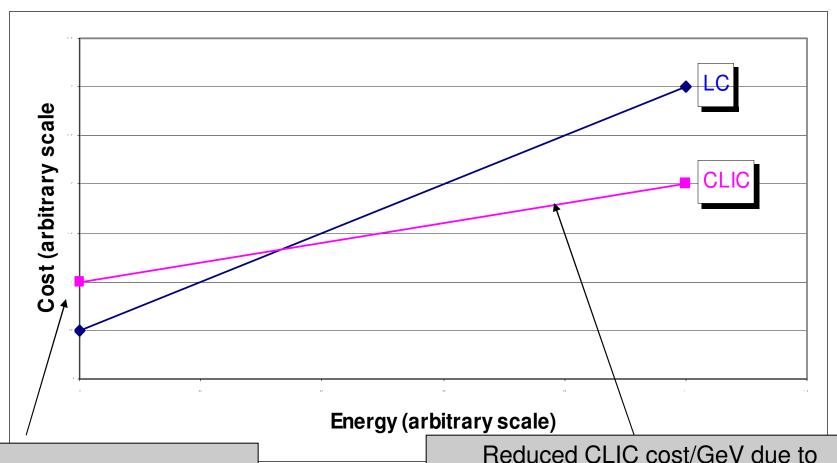

MoU under discussion: China (IHEP), Iran (IPM), TERA

Eugiap@ipe&spa(26Agero9) (ESA),



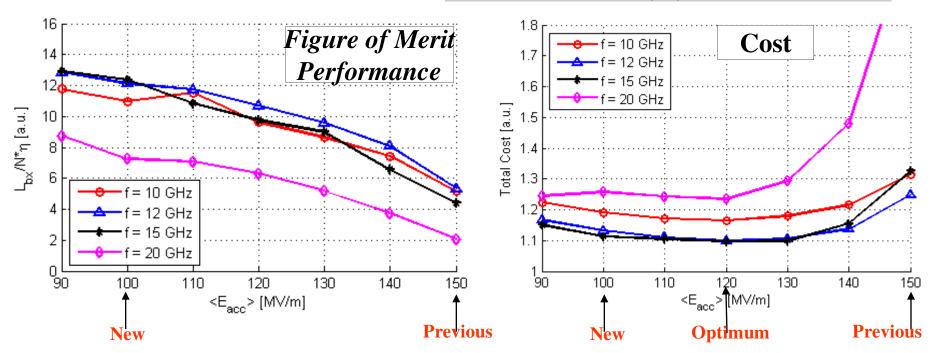
LC 500 GeV Main parameters

Center-of-mass energy	NLC 500 GeV	ILC 500 GeV	CLIC 500 G Relaxed	CLIC 500 G Nominal
Total (Peak 1%) luminosity	2.0(1.3)·10 ³⁴	2.0(1.5)·10 ³⁴	0.9(0.6)-1034	2.3(1.4)·10 ³⁴
Repetition rate (Hz)	120	5	50	
Loaded accel. gradient MV/m	50	33.5	80	
Main linac RF frequency GHz	11.4	1.3 (SC)	12	
Bunch charge 109	7.5	20	6.8	
Bunch separation ns	1.4	176	0.5	
Beam pulse duration (ns)	400	1000	177	
Beam power/linac (MWatts)	6.9	10.2	4.9	
Hor./vert. norm. emitt (10 ⁻⁶ /10 ⁻⁹)	3.6/40	10/40	7.5 / 40	4.8 / 25
Hor/Vert FF focusing (mm)	8/0.11	20/0.4	4/0.4	4/0.1
Bunch length (microns)	100	300	100	72
Hor./vert. IP beam size (nm)	243/3	640/5.7	248 / 5.7	202/ 2.3
Soft Hadronic event at IP	0.10	0.12	0.07	0.19
Coherent pairs/crossing at IP	10?	10?	10	100
BDS length (km)	3.5 (1 TeV)	2.23 (1 TeV)	1	.87
Total site length (km)	18	31	13.0	
Wall plug to beam transfer eff.	7.1%	9.4%	7.5%	
Total power consumption MW	195	216	12	29.4



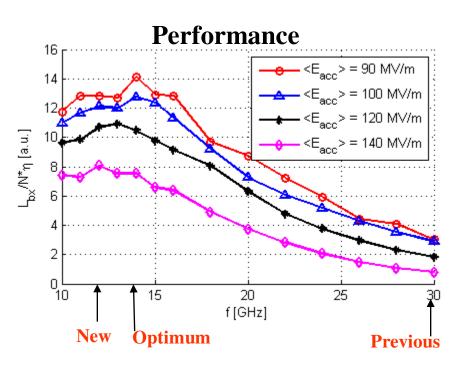
CLIC – layout @ 500 GeV

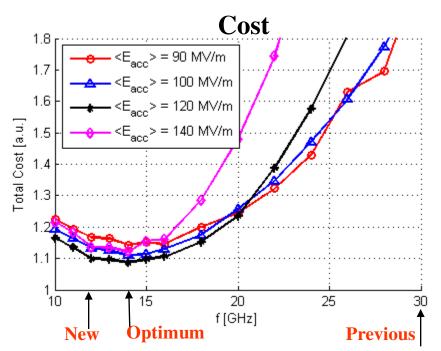
Relative cost of Linear Colliders


Additional CLIC offset due to drive beam injectors

Reduced CLIC cost/GeV due toreduced tunnel length (by 4)reduced equipment per meter of tunnel

CLIC performances (FoM) and cost (relative) as a function of the accelerating gradient


$$E_{cms} = 3 \text{ TeV}$$
 $L_{(1\%)} = 2.0 \ 10^{34} \text{ cm}^{-2} \text{s}^{-1}$

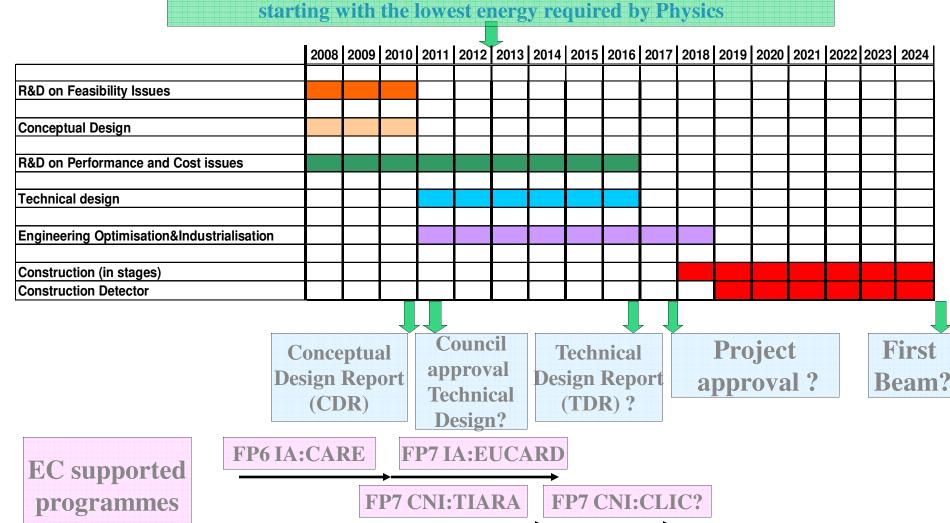


- Performances increasing with lower accelerating gradient (mainly due to higher efficiency)
- Flat cost variation in 100 to 130 MV/m with a minimum around 120 MV/m

ELLCperformances (FoM) and cost optimisation as function of RF frequency

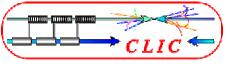
$$E_{cms} = 3 \text{ TeV}$$
 $L_{(1\%)} = 2.0 \ 10^{34} \text{ cm}^{-2} \text{s}^{-1}$

- Maximum Performance around 14 GHz
- Flat cost variation in 12 to 16 GHz frequency range with a minimum around 14 GHz



J.P.Delahaye

Tentative long-term CLIC scenario


Shortest, Success Oriented, Technically Limited Schedule

Technology evaluation and Physics assessment based on LHC results for a possible decision on Linear Collider with staged construction starting with the lowest energy required by Physics

CLIC @ PECFA (26 - 11 - 09)

50

Power flow @ 3 TeV

13.7 MW

Dumps

$$\eta_{REL} = .93$$

$$\eta_{M} = .90$$

$$\eta_{K} = .70$$

$$\eta_{K} = .70$$
Modulator auxiliaries
$$\eta_{K} = .090$$

$$\eta_{K} = .70$$
Power supplies klystrons
$$\eta_{K} = .70$$
8.0 MW 1 GHz RF power

148.0 MW 1 GHz RF power

Drive beam
$$\eta_S = .95$$
 acceleration $\eta_A = .977$

137.4 MW Drive Beam Power

$$F(\sigma) = .97 \times .96$$
 Drive beam power extr.

107.4 MW

PETS
$$\eta_{TRS} = .98$$
$$\eta_{T} = .96$$

101.1 MW 12 GHz RF power $(2 \times 101 \text{ kJ} \times 50 \text{ Hz})$

Main
$$\eta_{RF} = .277$$
 linac

Main beam injection, magnets, services, infrastructure and detector

154.6 MW

$$\eta_{\text{plug/RF}} = 38.8 \%$$

$$\eta_{RF/main} = 27.7 \%$$

$$\eta_{tot}$$
 = 6.8 %

Main beam

28 MW

Power flow @ 500 GeV

63.4 MW

Wall Plug (129.4 MW)

61.5 MW $\eta_{REL} = .93$

$$\eta_{\rm M}$$
 = .90

$$\eta_K = .70$$

auxiliaries Power supplies

Modulator

aux = 0.97

1 GHz RF power: 36.1 MW

klystrons

$$\eta_S = .95$$

$$\eta_A = .977$$

Drive Beam power: 33.5 MW

$$F(\sigma) = .97 \times .96$$

 $\eta_D = .84$

Drive beam power extr.

Dumps

13.7 MW

26.2 MW

$$\eta_{TRS} = .98$$

$$\eta_T = .96$$

$\eta_{RF} = .396$

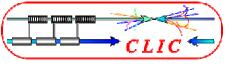
9.75 MW

Main beam injection, magnets, services, infrastructure and detector

66 MW

 $\eta_{\text{plug/RF}} = 38.8 \%$

 $\eta_{RF/main} = 39.6 \%$


$$\eta_{tot} = 7.5 \%$$

12 GHz RF power: 24.6 MW

 $(2 \times 25 \text{ kJ} \times 50 \text{ Hz})$

Main linac

Main beam

Successful CLIC 09 Workshop

http://indico.cern.ch/conferenceDisplay.py?confId=45580

The aim of the CLIC workshop is to review the progress of the CLIC study and to help defining its future.

- Focus on the preparation of the conceptual design report (CDR)
- Foster the preparation of the CLIC program after 2010 (TDR)
- Strengthen the CLIC/CTF3 collaboration and collaboration with ILC.

Chair: D.Schulte

- 1. Physics and detectors
- 2. Injectors and damping rings
- 3. Drive beam and low emittance transport
- 4. RF structures and sources
- 5. Technical systems

Participants: 250 (registered) from 66 Inst. of 21 countries

Conceptual Design Report Coordinator/editor: H.Schmickler Contribution/Authors by CLIC collaborators

3 volumes: similar to ILC CDR:

- Vol1: Executive Summary
- Vol2: The CLIC accelerator and site facilities
- Vol3: The CLIC physics and detectors including detailed value Estimate specific contribution in vol. 2&3; summary in vol. 1.

Outline with Authors/Abstract & key words by end 09

Progressive redaction from early 2009

Preliminary draft at LC 2010 (Sept 2010) Final draft by end 2010