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ALPHA Experiment @ CERN

• Precision measurements on antimatter using 
Antihydrogen atoms
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What is Antimatter?

• Particles have twins with same mass, opposite charge

- +
Matter:

Electron Proton

Antimatter:

Positron Antiproton

+ -
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What is Antimatter?

• Atoms and antimatter atoms? 

Matter:
-

+

Hydrogen

Antimatter: +

-
Antihydrogen
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What is Antimatter?

• Watch out when they meet their twin!

+

-
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What is Antimatter?

• Annihilation!


• Conversion to (lots of) Energy
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Annihilations

• Positron / Electron:  photons (511 keV)

• Antiproton / Proton: Many possibilities - Pions, etc.

positron / electron  
Annihilation

proton / antiproton 
Annihilation
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First Observation: Positrons

• 1932: Carl Anderson follows up theory quickly: 
           Positrons in Cosmic Rays 
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First Observation: Antiprotons

• 1955: Owen Chamberlain and Emilio Segrè 
Antiprotons from 1 GeV Protons on Cu Target

Bevatron,  
Lawrence Berkeley National Lab

Chamberlain Segrè
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What’s the matter with Antimatter?

• Should be equal amounts produced at Big Bang...

Matter Antimatter

Matter
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Possible Explanations: Fundamental Flaw?

• C. P. T. Symmetry: Fundamental Feature of Universe

1. Take any experiment 
2. Swap Charge, Parity, and run Time backwards 

“CPT Transformation” 
3. Outcome should be the same

• CPT violation has never been observed

• It is an assumption in essentially all Physic

• Replacing matter with antimatter: a CPT Transformation

• CPT Test: Compare properties of Matter and Antimatter
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Possible Explanations: Gravity?

• Gravity?

Apple

Earth

Anti-Apple

Anti-Earth

Anti-Apple

Earth
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Where do Positrons come from?

• Easy: Some radioactive isotopes

• Naturally occurring Potassium-40 (in Bananas: ~ 15 Positrons / sec)

• ‘Manufactured’ Sodium-22

“I am a banana!” Don Hertzfeld
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Where do Antiprotons come from?

1. Energetic proton creates Proton/Antiproton pair

2. Charge/Mass selected

Cern Proton Synchrotron

-+

(and other stuff)

+

~26 GeV

~3 GeV
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Antimatter: What’s it good for?

• Material Characterization (positrons)

• Medical imaging: PET scans


- Positron Emission Spectroscopy


• High energy physics (antiprotons)

Single Top-Quark Candidate Event.  
D-Zero collaboration
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Antimatter: What’s it good for?

Hollywood has some suggestions...

a surprisingly timely movie...
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Wouldn’t that make a good bomb?

Dan Brown writes a novel: “Angels and Demons”

• About researchers from CERN ...

• ... trapping 1/4 gram of antimatter ...

• ... that is stolen by the Illuminati ...

• ... who threaten to blow up the Vatican.

...amidst scandal on  
the eve of a new Pope
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Antimatter Bombs

• Start with antiprotons: (more bang for the buck)

• Mass conversion efficiency is a fundamental limit.


• Ignoring practicalities of storage...

• CERN could produce this 1/4 gram in ...


... about 1 Million years

No bombs. Economics don’t make sense.



CERN Visiting Schools, June 2017

But surely...

Original: Zach Weiner, SMBC-Comics.com
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History: Forming Antihydrogen

• 1980’s - Antiprotons at CERN / Fermilab

• ‘Fixed Target’ - smack antiprotons into Xenon

• 9 atoms at CERN (1995), 99 at Fermilab (1996)  

• Momenta way too high!

E862: Blanford et al. Phys. Rev. Lett. 80, 3037 (1998)PS210: Baur et al. Phys. Lett. B 368, 251 (1996)
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History: Forming COLD Antihydrogen

• CERN Antiproton Decelerator (1999) 

• AD: 10,000,000 antiprotons / 2 minutes


- “Low Energy” = 5 Million Volts!


• First ‘Cold’ antihydrogen: ATHENA and ATRAP (2002)

• 100’s of millions produced since
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Recipe for Cold Antihydrogen

1. Trap ~10 Thousand antiprotons

2. Trap ~10 Million positrons  

3. Chill ingredients to 10’s of Kelvin

4. Mix, while keeping species cold and confined

5. Bam!

+

-!
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ALPHA Apparatus
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ALPHA Apparatus

Positron Accumulator

0 1 m

p

Na-22
Source

e+
1-3 T outer solenoid

Antiproton

Capture Mixing TrapDetector

Octupole

Mirror

Inner solenoid

Cryostat

Vapour cooled leads

Phosphor screen + e-gun
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Antimatter: Confinement

• Non-neutral plasmas: gas of single-charged particles

- Pure ensembles of electrons, positrons, antiprotons, etc.


• Penning-Malmberg trap
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Capturing Antiprotons

• Degrade antiprotons - 5 Million Volts is still a lot...

• Antiprotons equilibrate with electrons

-3 kV
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Antiproton / Electron Plasma

• Image the equilibrium Antiproton / Electron plasma

~2 mm

antiprotons

electrons
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Antihydrogen Formation:  
Mixing Antiprotons and Positrons

1. Antiprotons injected into ‘Nested Potential’

2. Antiprotons lose energy by collisions with Positrons

3. Form Antihydrogen, leaves electrostatic trap
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Antihydrogen Detection

• Silicon-strip detector 

• 3D ‘Digital Camera’


- Particle tracks point to vertex


• Vertex resolution ~ 3mm

• > 50% efficiency for annihilations
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Antihydrogen Detection During Mixing



CERN Visiting Schools, June 2017

Trapping Antihydrogen

• Atoms are neutral: Not confined by penning traps

• Antihydrogen has a small magnetic moment


- Like a little refrigerator magnet    


• Can use a magnetic minimum trap (superconducting)

• Orientation matters (solenoid keeps alignment)

• Makes a shallow ‘Bathtub’ for T < 0.5 K (-272.65 C)

Mirrors

Multipole

NS
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Trapping Antihydrogen: Search

1. Turn on magnetic trap

2. Mix and Form Antihydrogen

3. Eject remaining charged particles

4. Rapidly (< 30 ms) shut off trap (“Quench”)

5. Detect annihilations

Octupole and Mirror  
Current Decay during 

“Quench Window”
Antiproton
Annihilation

Cosmic Ray
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Antihydrogen Search with Bias Fields
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m
e 

(m
s)

Ti
m

e 
(m

s)

0

10

20

30a

Axial position, z (mm)

0

10

20

30b

–200 –100 0 100 200

• No spatial bias in signal

No Bias 
Left Bias 
Right Bias 
(* Heating)

Simulation

Simulation



CERN Visiting Schools, June 2017

Trapped Antihydrogen!

• Antihydrogen trapped. 

- 1 atom / 15 minutes. 


• 100‘s of atoms for 
 100’s of seconds 

G. B. Andresen, et al. (ALPHA). Nature. 468, 673-676 (2010) 
G. B. Andresen, et al. (ALPHA). Nature Physics 7, 558-564 (2011) 
G. Gabrielse, et al. (ATRAP) Phys Rev. Lett. 108, 113002 (2012)
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Comparing Matter and Antimatter: Color

• Color is a property of Light

• Light is composed of ‘Photons’ 


- Electromagnetic waves - color from wavelength and frequency


• White light from the sun is composed of many colors

- Use a prism to separate the different types of photons


• What color is Hydrogen?
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Hydrogen Spectroscopy

• Excited atoms emit discrete wavelengths

• Spectroscopy is the measurement of these photons

• Hydrogen spectrum: well- measured and predicted


- Ground-state (1S) to first excited state (2S)

656 nm410 nm

C. Parthey, et al. Phys. Rev. Lett. 107, 203001 (2011)



CERN Visiting Schools, June 2017

Atomic States

• Atoms can exist in many discrete (quantum) states

• Different states have different energies 


- Lowest energy: ‘Ground state’

- Highest energy: Unbound (no longer an atom)


• Atoms transition between states by absorbing or  
emitting photons


• ‘Color’ of the photon relates to the energy differences

-

+
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Atomic Spectra and CPT

• Atomic spectra should transform directly by CPT

• Accomplished by swapping in Antihydrogen

CPT
-

+

+

-

OK!

CPT Violated!

Goal: Precisely test CPT by comparing 
Hydrogen and Antihydrogen spectrum
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ALPHA-2: Laser Access Required!

• Modularity for interfacing with CERN/ELENA upgrade

- More antiprotons


• Increase antihydrogen trapping rate

• Lasers for Spectroscopy and Cooling


• 243 nm 2-photon spectroscopy, 121 nm Lyman-alpha laser cooling


• Built from 2012 - today
Antiproton Catching Trap Anti-Atom Trap Positron Source / Accumulator 

10 meters 

antihydrogen antiprotons positrons 

Interrogation/Cooling Lasers 
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ALPHA-2: After LS1 (September 2014)
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1S - 2S Laser System

• GPS-reference Menlo Systems Frequency Comb locked to ULE cavity


• 243 nm Toptica laser (~ 100 mW) locked to ULE


• In-situ PDH-locked cryogen build-up cavity (~ 1 W)
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Challenges with Antihydrogen Spectroscopy

• Ultimate goal in ALPHA: Measure 1S - 2S transition

Problem: Few trapped atoms


- Direct detection of absorbed or radiated photons is presently futile


Solution: 

• Drive antihydrogen from a trapped to untrapped state


• Efficiently detect annihilation
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Untrapping Antihydrogen

• Example: Hyperfine Transition (spin-flip)


• Example: Ionization with ultraviolet light

NS

M. Niering, et al. Phys. Rev. Lett. 84, 5496 (2000) 

Trapped State Un-trapped State

-
+

�
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1S - 2S Transition in (anti) hydrogen

• 2 - photon Doppler-free 
spectroscopy (243 nm)


• Drive between trapped 
hyperfine states
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1S - 2S possible outcomes

ON Resonance

OFF Resonance

ON resonance: 
47% Removal  

(1 Watt circulating power)

OFF resonance: 
200 kHz detuned
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1S - 2S Experiment

• Produce and trap antihydrogen

• Illuminate experiment (or not) for 600 seconds


- On-Resonance 
• Drive fcc and fdd   (300 seconds each)


- Off-Resonance 
• Detune each by 200 kHz


- No-laser 

• Fast magnet ramp-down 

- Look for disappearance


• Also look for appearance

- Multivariate Analysis…
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1S - 2S Disappearance

• ON-Resonace de-populates the trap


• ON and OFF resonance trials differ by 92 ± 15 counts 

- (Detector efficiency here is 0.376)


• (58 ± 6)% of atoms removed
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1S - 2S Appearance

• Tune MVA for appearance mode 


• Difference (ON - OFF) resonance totals is  52 ± 10 

- (Detector efficiency here is 0.376)

Annihilations in disappearance 92 / 0.688 134

Annihilations in appearance 52 / 0.376 138
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1S - 2S Summary
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1S - 2S Prospects

• The transition has been found (100’s kHz level)

• Measurement of lineshape limited by end of beamtime

• Precision at the 10’s kHz level is possible

• ~10-10 (Hydrogen) 
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Simulation for F = 100

Precision gravity?

• Do atoms and anti-atoms gravitate differently?


• Antihydrogen will fall out the bottom (or top) of the trap
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Gravitational Deflection: Precision?

• Simulate various F, test exclusion 
of RCA during quench


• Not very precise:

- Poor statistics, hot population, short distance


• Charge neutrality important

NATURE COMMUNICATIONS | 4:1785 | DOI: 10.1038/ncomms2787 | www.nature.com/naturecommunications
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ALPHA-g: Precision gravitational measurements 
with antihydrogen

• ~ 2 m tall antihydrogen trap

• Release + detect falling Hbar

• Measure sign of gbar


- ~ 1 year


• Measure gbar a ~ 1%

- 4 - 5 years
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Summary

•Understanding the differences between  
matter and antimatter is a Grand Challenge of physics


•ALPHA has taken the first steps towards this goal by 
trapping antihydrogen, performing preliminary 
measurements on trapped antihydrogen.


•ALPHA-2: Recently demonstrated driving the 1S - 2S 
transition


- Line shape measurements in the near future!


•ALPHA-g: Future effort on gravity underway!



CERN Visiting Schools, June 2017

Thanks!

... Many things you can do 

with antimatter in a can!


