
Bulk IO Update
Brian Bockelman

 1

Recap: Sales Pitch
• Experiment event data models are complex — and slow to read!

• Experiments don’t care because input I/O time is minimal compared to
reconstruction.

• Experiments care about volume because they have lots of expensive disk.

• Analysis is different: data model is often simple.

• Much smaller data volume. Often on SSD (now NVMe).

• Minimal CPU costs: iterate over events many times, quickly.

• I/O Speed is king!

• Bulk I/O is an approach to deliver a cluster of events at once

 2

What’s possible?

See details here: https://arxiv.org/pdf/1708.08319.pdf

Here, we are apply four simple kernels
across a 5.4M event dataset. Iterating over
muon objects in an event; each muon has 42
attributes.

• “full dataset” - ROOT reads all 42
attributes from each muon in the event.

• “ROOT selective on full” - ROOT reads 3
attributes out of 42.

• “ROOT slim dataset” - Separately prepare
a derived dataset with only the 3 relevant
attributes, use ROOT to iterate on that.

• “Code transformation on full ROOT
dataset” - Python implementation of the
kernels, analyzing the full dataset. Data is
delivered via bulk IO.

N.B.: Same compute kernels applied to in-
memory arrays (no I/O) are ~3x faster.
Exception is “mass of pairs”, which is more
compute-bound.

 3

ROOT Bulk IO API
• Add a new public method to TBranch:

• GetBulkRead returns a dummy object inside the
ROOT::Experimental::Internal namespace.

• All bulk I/O operations occur with TBulkBranchRead.

• Awkward separation is on purpose: clearly telegraph to users
that this is experimental / internal.

• N.B.: Philippe has suggested this could switch from being a
dummy object to use of inheritance…

ROOT::Experimental::Internal::TBulkBranchRead	&  
								GetBulkRead();

 4

TBulkBranchRead
• Has 4 basic public functions; we’ll walk through the precise

arguments in a second:

• The GetEntries* calls is essentially the “bulk IO API”.

• Meant to allow highly optimized usage for experts. Not meant for
users.

• Example: initial PR includes C code to directly export ROOT
branches into numpy arrays.

• We don’t expect every grad student to write such a thing…

Int_t		GetEntriesFast(Long64_t	evt,	TBuffer&	user_buf,	bool	checkDeserializeType=true); 
Int_t		GetEntriesSerialized(Long64_t	evt,	TBuffer&	user_buf,	bool	checkDeserializeType=true); 
Int_t		GetEntriesSerialized(Long64_t	evt,	TBuffer&	user_buf,	TBuffer*	count_buf,	bool		
																												checkDeserializeType=true); 
Bool_t	SupportsBulkRead()	const;

 5

GetEntriesFast
• Given an event at the beginning of an basket, return the

deserialized objects in a user-provided buffer.

• Caller is expected to keep track of basket boundaries.

• On success (return code >=0), buffer points to
deserialized event data. Return code is the number of
events in the buffer.

• If the branch holds a single double, then the double
from evt+idx is at:  
 

Int_t		GetEntriesFast(Long64_t	evt,	TBuffer&	user_buf,	bool	checkDeserializeType=true);

reinterpret_cast<double*>(user_buf.GetCurrent())[idx]

 6

GetEntriesFast -
Continued

• checkDeserializeType provides a way to bypass (sometimes costly)
internal type checks. Can be set to false after first successful bulk IO read.

• Caller does not own the memory in user_buf on successful return - it’s
managed by the TBranch.

• Suggestion from Philippe: instead of sharing ownership of user buffer,
swap contents of buffer and internal basket.

• Caller must track: basket beginning and end boundaries; branch type.

• Caller must know how to iterate correctly through data in buffer (most useful
for fixed-size branches).

• Overall, quite a bit for the caller to do! (Recall, this is meant to be the internal
interface)

 7

GetEntriesSerialized
• Similar to GetEntriesFast, but the resulting buffer contains the raw

serialized data.

• Second overload also optionally returns a ‘counts buffer’ in the case of
arrays. Returns the number of events per entry in the user_buf.

• For int-typed branches, the returned data is in big endian ordering.

• Why such a raw interface?

• Some consumers (numpy) can work with the big-endian data directly.

• If we deserialize (e.g., byteswap) in the ROOT I/O libraries, we may iterate
through a large array, flushing the processor cache in the process.

• TTreeReaderFast will inline the byteswap when the values are
accessed by the user code.

Int_t		GetEntriesSerialized(Long64_t	evt,	TBuffer&	user_buf,	bool	checkDeserializeType=true); 
Int_t		GetEntriesSerialized(Long64_t	evt,	TBuffer&	user_buf,	TBuffer*	count_buf,	bool		
																												checkDeserializeType=true);

 8

When does bulk IO work?
• Bulk IO can only work with a limited number of cases; we can only manipulate

the data in-place, meaning the deserialized object in memory must be smaller-
than-or-equal-to the serialized byte stream.

• Primitive types.

• C-style structs. (Nothing with virtual pointers!).

• arrays or std::vector of basic types.

• No references or pointers.

• Quite limiting compared to ROOT’s full capabilities: likely not that limiting for
analysis users!

• Current version has some additional caveats (very limited ability to handle
TLeafElement).

 9

TTreeReaderFast
• Consider sample TTreeReader code:

 TTreeReader myReader("T", hfile);  
 TTreeReaderValue<float> myF(myReader, "myFloat"); 
 Long64_t idx = 0;  
 Float_t sum = 1;  
 while (myReader.Next()) {  
 sum += *myF;  
 }

• Observation: here, TTreeReaderValue<float> provides compile-time guarantees about
the object type.

• Idea: write a TTreeReaderFast class that manages the TBuffer and basket boundary
management in GetEntriesFast.

• myReader.Next() could be inlined by compiler, avoiding function calls unless a new basket is
needed.

• Since the compiler knows the branch type, *myF would invoke the appropriate deserialization
code via template specialization.

 10

TTreeReaderFast
• TTreeReaderFast provides a user-friendly

interface on top of the bulk IO API.

• Unfortunately, since we use inlining techniques,
compiler must be told branch is “bulk I/O
friendly”. (Not clear if fallback to TTreeReader is
possible.)

 ROOT::Experimental::TTreeReaderFast reader("DecayTree", hfile);
 ROOT::Experimental::TTreeReaderValueFast<int> val_h1_is_muon(reader, "H1_isMuon");

 reader.SetEntry(0);
 Long64_t idx = 0;
 for (auto it : reader) {
 idx++;
 }
 printf("There were %lld events read.\n", idx); 11

Next Steps
• Cross the finish line. Technical work has been stalled for a

few months.

• Zero-copy interface: If TFile was extended with mmap-
compatible interfaces, we could avoid memory copies.

• Continue to expand object types and branches that can
use the bulk IO API.

• Merge testing suite into roottest; add to rootbench.

• Figure out how to make this usable by TDataFrame (and
whether TDF is fast enough for this to be relevant).

 12

