

Emittance Evolution Update

C. Rogers, ISIS Intense Beams Group Rutherford Appleton Laboratory

Overview

MICE

- A little more detail on systematic uncertainties
- Diffuser model update
- Max radius cut update
- TOF01 relative to e-

Reminder of the result

- Reminder we are trying to measure amplitude
 - The number of muons at different "temperature"
 - Muons at low amplitude are "cooler"
 - We want to show we have more muons at low amplitude after the absorber

Reminder – correction routine

Mechanics of Calculation

- Record the upstream sample (~1e4 events) at TKU station 5
- Smear using KDE
- Sample ~1e6 events from resultant distribution
- Reapply following cuts:
 - TKU chi2 cut
 - TKU max radius cut
 - TKU p cut
 - All downstream cuts
- I did a MC production for 3-140, 6-140, 10-140 IH2 empty
 - No absorber data; no time
- Stats errors are generated by taking standard deviation of 10 subsamples / sqrt(10)

Migration matrix

Simulated 2017-2.7 10-140 IH2 empty Systematics tku base

- Detector resolution causes muons to migrate between bins
- Migration matrix technique to calculate and correct migration
- N_{ii} is number of events in ith bin in truth and jth bin in recon
 - Always considering the sample of events that was reconstructed
- Then Migration matrix is
 - $M_{\parallel} = N_{\parallel}/Sum_{\parallel}(N_{\parallel})$

DS MC truth (recon) amplitude [mm]

Inefficiency

inefficiency all_downstream pdf_ratio

- Detector inefficiency causes muons to "disappear"
- Use MC to estimate the probability of disappearance
- N^{true|reco}_i = number events in recon sample in bin i
- N^{true|true} = number events in true sample in bin i
- Always use recon truth to calculate the amplitudes
- Efficiency correction, E_i = N^{true|true},/N^{true|reco}

Sources of Systematic uncertainty

- Some systematic uncertainties arise because we don't quite know what was really installed in the hall
- Consider sources of systematic uncertainty (TKU and TKD)
 - Tracker position (1 mm)
 - Tracker tilt (1 mrad)
 - E1 scale (5 %)
 - E2 scale (5 %)
 - CC scale (1 %)
 - Tracker glue density (0.5 g/cm³ ~ 25 %)
- Change each parameter; recalculate correction
 - How sensitive is the correction to different uncertainties?
 - Plot "modified correction" "baseline correction" vs uncertainty
- Quoted uncertainties
 - Apply each correction in turn; calculate N^{true|true}
 - Calculate the difference between N^{true|true} compared to the baseline
 - Add in quadrature

TKU – migration matrix

- Change in diagonal terms of migration matrix
 - Note that migration matrix makes a flow from one bin to another
 - So this is not a straight "uncertainty" on the bins
- Density uncertainty is dominant effect

TKD - migration matrix

- TKD position uncertainty is dominant effect
 - Why is this a stronger effect for TKD than TKU?

TKD – efficiency

Lots of significant factors

Results – amplitude pdf

Results - amplitude cdf

Results - pdf ratio

Results - cdf ratio

Job List

- Diffuser geometry
- Max Radius Cut
- TOF relative to e- peak
- 4 mm beam processing in progress
- Understand Delta TOF01 issue
- More statistics in data & MC
- Systematic due to mis-PID
- Systematic due to downstream cuts
- Go over errors again
- Finish writing note
- Target end of May

Discussion – Long Emittance Paper

- Starting to think about long emittance paper
- Aim is to process all of the data sets
 - Some global fitting routine (TOF and tracker)
 - Fix low pt hole
 - Better TOF recon?
- Aim is to improve control of systematics
 - Tracker alignment (to solenoid)
 - Magnetic field in solenoid
 - Tracker material model
- Systematics of MC
 - The long paper should have a comparison with MC (the rapid communication may not)
 - What are the uncertainties/systematics in the MC?
- Other jobs?
- Who will do it?