Update on the DBRC's studies

Raul Costa

April 19, 2018

CLIC beam physics meeting

Outline

- 1 DBRC review
- 2 Longitudinal challenges
- 3 Impact of synchrotron radiation
- 4 Results emittance: 100 μ m
- **5** Results emittance: 80 μ m
- 6 Conclusions and Outlook

DBRC review

The Drive Beam Recombination Complex

The DBRC is located between the drive beam linac and the deceleration sectors

It's role is to combine the drive beam by a factor $24 \times$ into high frequency pulses

"Nominal" Parameters

^{*} DBRC results presented were generated for 2.38 GeV

Longitudinal challenges

Longitudinal challenges

Source of the longitudinal issues

$$z(s) = z + R_{56}\delta + T_{566}\delta^2$$

$$T_{566_{[n]}} = \sum_{i} R_{5i_{[n]}} T_{i66_{[n-1]}} + \sum_{ij} T_{5ij_{[n]}} R_{i6_{[n-1]}} R_{i6_{[n-1]}}$$

$$T_{566[n]} \sim T_{566[n-1]} + \left(R_{26[n-1]}\right)^2 T_{522[n]}$$

$$T_{522_{[Drift]}} = \frac{L}{2}$$

T_{566} tracking - single arc (CR2)

Placet2 was updated to track individual tensor elements

T_{566} optimisation - Technique

Correction with sextupoles in dispersive regions

API to Octave to access Nelder-Mead's simplex

Define sextupole families (7-40) and minimize $w_1 \varepsilon_x + w_2 \varepsilon_y + w_3 T_{566}^*$

Takes a lot of fine tuning Takes a lot of time

^{*} In reality minimizing the error of a linear fit is more efficient

Impact of synchrotron radiation

Impact of synchrotron radiation

The lattice was optimized with ISR

Tracking without ISR actually increases T_{566}

This does not mean that ISR is beneficial

Simply that the solutions for both models are very different

Results - emittance: $100 \ \mu \text{m}$

Notation

We are tracking 12 bunch "families" differentiated by the number of turns they take in CR1 and CR2: $\mathbf{b}_{\text{CR1}}^{\text{CR2}}$

Notation

Targeting $\langle \varepsilon \rangle$ does not ensure twiss and centre-orbit match We project all bunches on top of one-another and compute $\tilde{\varepsilon}$

$$\tilde{\varepsilon} \geq \langle \varepsilon \rangle$$

$100~\mu\mathrm{m}$ results - CR1

$100 \ \mu m$ results - Extraction

$100~\mu\mathrm{m}$ results - Extraction

Bunch	$S_{ m total} \left[{ m m} ight]$	$\varepsilon_x \left[\mu \mathrm{m} \right]$	$\varepsilon_y [\mu \mathrm{m}]$	$T_{566} [{ m m}]$	$\sigma_z [\mathrm{mm}]$
$\begin{array}{c} b_{2.5}^{3.5} \\ b_{2.5}^{2.5} \\ b_{2.5}^{2.5} \end{array}$	4145	212	143	9.6	0.93
$b_{2.5}^{-2.5}$	3706	220	135	7.3	0.72
$b_{2.5}^{-1.5}$	3267	177	134	5.1	0.52
$b_{2.5}^{\ 0.5}$	2828	147	128	2.8	0.32
$\begin{array}{c} b_{1.5}^{3.5} \\ b_{1.5}^{2.5} \end{array}$	3853	125	128	10	0.97
$b_{1.5}^{2.5}$	3414	134	123	7.8	0.76
$b_{1.5}^{-1.5}$	2975	115	121	5.6	0.56
$b_{1.5}^{\ 0.5}$	2536	116	117	3.3	0.36
$b_{0.5}^{3.5}$ $b_{0.5}^{2.5}$	3560	146	127	11	1.04
$b_{0.5}^{2.5}$	3121	147	124	8.4	0.82
$b_{0.5}^{-1.5}$	2682	143	122	6.2	0.62
$b_{0.5}^{-0.5}$	2243	128	116	4.0	0.42
$\mathbf{b}_{i}^{\ j}$		157	127	_	

Results - emittance: 80 μm

$80 \ \mu \text{m}$ injection

- The DBRC's target emittance is fixed at $< 150 \mu m$ by the PETS
- Is it possible to achieve lower than 100 μ m at injection?
- Avni Aksoy presented promising results in the last CLICWS [2]
- Avni was kind enough to provide us with his scripts

DBA simulation parameters

DBA simulation parameters:			
Initial energy (MeV)	50		
Final energy (GeV)	2		
Initial Energy Spread (%)	1.0*		
Bunch Charge (nC)	8.4		
Initial emittance (μm)	30		
BPM resolution (μm)	10		
Misalignment errors - Quad. and Acc. (μm rms)	200		
Pitch errors - Acc. (μ rad rms)			

^{*} Previously 0.2%, increased based on results from [3]

DBA simulations (WFS)

- Average final emittance: $\varepsilon_x = 31 \ \mu \text{m}, \ \varepsilon_y = 30 \ \mu \text{m}$
- Final energy spread of $0.836\% \pm 0.004\%$

80 $\mu \mathrm{m}$ results - T_{566} correction

80 μ m results - CR2 (4x)

$80 \ \mu \text{m} \ \text{results} - \text{CR2} \ (12\text{x})$

Conclusions and Outlook

Conclusions

- At 100 μ m emittance:
 - Placet2 was updated to track tensor elements
 - We confirmed the inside of the arcs as the main source of T_{566}
 - ISR is significant for T_{566} growth
 - It doesn't appear possible to address the longitudinal challenges without changing the lattice (ex: extra sextupoles)
- At 80 μ m emittance:
 - CR2 was optimised to correct T_{566} while maintaining the emittance under the budget ($\varepsilon_x = 132 \ \mu \text{m}$, $\varepsilon_y = 116 \ \mu \text{m}$)
- DBA results ($\varepsilon_x = 31 \ \mu \text{m}$, $\varepsilon_y = 30 \ \mu \text{m}$) allow for the reduction

Outlook

• DBRC

- Test the lattice at 2 GeV
- Try to close T_{566} "locally" at the DL' and CRs' arcs
- Optimise the TTA
- Optimise full recombination at 80 μ m (?)
- Would 50 μ m be an option?
- Implement misalignments and BBA techniques
- DBI+DBA
 - Can we get a realistic distribution for the DBRC?
- Decelerators
 - Compute form factor for the DBRC's distributions
 - Set up simulations for off-center beams (Xianfcong's work)
- Placet2
 - CSR? PETS?
 - Parallelization, LXplus, etc...

Bibliography

- C. Biscari *et al.*, "CLIC Drive Beam Frequency Multiplication System Design", Particle accelerator. Proceedings, 23rd Conference, PAC'09, Vancouver, Canada (2009).
- A. Aksoy, "Drive Beam Linac Optimisation", CLICWS2018, Geneva, Switzerland (2018).
- Hajari, Sh Sanaye and Shaker, H and Doebert, S, "Beam dynamics design of the Compact Linear Collider Drive Beam injector", Nucl. Instrum. Methods Phys. Res., A, 799 (2015).