SBN physics case (A short review)

Sandro Palestini EP-NU meeting – 19/04/18

Situation (to be confirmed): more than 3 neutrinos

- LSND oscillations (anti- ν_{μ} -> anti- ν_{e} from muons at rest, Los Alamos, at ≈0.25% fraction) 3.8 σ evidence of appearance
- Confirmed by MiniBooNE (BNB beam at Fermilab) with 3.4 (2.8) σ for (anti)neutrinos
- Low energy anomalies: v_e flux deficit ≈7% observed at ≈3 σ with nearby detectors at reactors, and with calibration sources at solar neutrino experiments SAGE and Gallex.
- − Phenomena at *L/E*≈1 m/MeV, or $\Delta m^2 \approx 1 \text{ eV}^2$, far from the scale of oscillations established at $\Delta m^2 = 2.5 \times 10^{-3}$, 0.76×10⁻⁴ eV² for atmospheric and solar neutrinos.
- An additional mass difference implies at least one additional neutrino, which does not take part in SM weak interactions.

LSND and MiniBooNE have observed an excess of v_e equal to $\approx 0.25\%$ of v_{μ} , after subtraction of other sources and bkg.

Band of solution for initial oscillation with (Δm²)²×sin²(2θ)≈constant

Phenomenology

- New mass difference: at least one new sterile u
- Schemes:
 - 3+1: 3 u's in the usual mass pattern plus a fourth one (which does not interact with leptons, Z ...) well separated from the others.
 - 2+2 : doublet internally separated by dm²_{solar}, dm²_{atmospheric}, and globally separated by ≈1eV ²
 - >1 sterile neutrinos

Phenomenology of 3+1 v's

- 3+1 is more frequently taken as paradigm:
 - In the regime of oscillations driven by Δm_{4i}^2 :
 - $Prob^{3+1}(\upsilon_{\mu} \rightarrow \upsilon_{e}) = \sin^{2}(2\theta_{\mu e}) \sin^{2}(\Delta m^{2}_{4i}L/4E)$
 - $Prob^{3+1}(\upsilon_{\mu} > \upsilon_{\mu}) = 1 \sin^2(2\theta_{\mu\mu}) \sin^2(\Delta m_{4i}^2 L/4E)$
 - $\sin^2(2\theta_{\mu e}) = 4 |U_{\mu 4}U_{e 4}|^2$
 - $\sin^2(2\theta_{\mu e}) = 4 |U_{\mu 4}|^2 (1 |U_{\mu 4}|^2)$
 - Similar equations can be written in the regimes of oscillation driven by Δm_{21}^2 and $\Delta m_{32}^2 \cong \Delta m_{31}^2$.
 - Observed amplitude of the oscillations in the 2-neutrinos scheme implies $|U_{\mu4}|^2 \approx |U_{e4}|^2 << 1$.

SBN concept in few words

- Improve on MiniBooNE with better detector(s) (better ID, less background)
- Expand the L/E range using three similar detectors
 - SBND, MicroBooNE, Icarus (T600) at 150m, 470m, 600m and 80t, 90t, 480 t fiducial volume respectively
 - Similar (LArTPC) technology to improve performance and systematics
 - Reduction of beam systematics due to knowledge of BNB and flux scaling properties (in particular between 470 and 600 m)
- Experiments at surface, cosmic-ray induced background is relevant.

Measurement main target: u_e appearance

To be obtained measuring the *E*, *L* dependence of Charged-Current events in excess of non-oscillating v_{ρ} in the beam (from K, μ decays) and of backgrounds

Measurement target: mainly u_e appearance

• Detectors:

- Charged particle reconstruction in LAr TPC , with collection time 1.3 ms, 1.6 ms , 1.0 ms respectively, with 3 layers read-out wires, 3 mm spacing (read out in Lar).
- E_{v} from energy of electron (CC interaction)
- Scintillation light signal to enforce coincidence with beam spill
- Beam: Fermilab Booster Neutrino Beam (8 GeV p)
 5E12 p per spill, 1.6 micros spill, 2ns/19ns substructure
 5 Hz cycle, 6.6E20 p on target, 3 years run
 (211 s total *beam time*)

Backgrounds

- Beam interaction in detectors:
 - NC gamma misidentified as electron events (reject with local energy deposition) (E > 200 MeV taken as selection criteria, with 80% reconstruction efficiency)
 - υ_{μ} CC with π^{0} -> γ 's mistaken as e[±] and μ misidentified
 - v_e e- elastic scattering, but the cross section is small
- Beam interactions near detector (*dirt events*):
 - Fake e[±] mostly near detector front and side walls, mitigated with fiducial volume < LAr volume
- Background related to cosmic rays (cosmogenic bkg.):
 - gamma conversion taken as υ_e CC

Cosmogenic bkg. continued

- Needs to be in time with beam spill
- Better, in time with spill substructure (2 ns $\approx \sigma_{\text{time}} \ll$ 19 ns)
- Tends to come together with a muon entering/crossing the detector
 - Reject if v_e CC candidate near a muon (or near wall)
- Can be present also if in time only with the detector collection time (≅1 ms)
 - if a second cosmogenic background event occurs in a triple coincidence with the spill (1.4 μs) (triple coincidence)
 - or if a beam interaction (e.g. υ_{μ} CC) takes place in the same spill.
- Mitigate with:
 - association of υ_e CC candidate with scintillating signal to enforce timing to 1.4 μs
 - External veto tagging (position and time for 1.4 μs coincidence)

Example of expected dN_{ue}/dE

Note the large value of the oscillation amplitude chosen here, and the differences in event yield, related to position and volume. The muon tagger reduces the cosmogenic bkg. by a factor > 100.

Beam related systematics

- Normalization uncertainties in the total flux are at the level of 10-15% in both neutrino flux and the neutrino interaction uncertainties.
- However the effect of these uncertainties cancel to large extent:
 - Relative rates in the three detectors are used in the measurement
 - Very similar detector response, and use of the same beam result in largely coherent systematic errors (hence favorable) in reconstructed energy spectra among the different detectors and the between v_e and v_{μ} CC events.

Coming to the conclusion:

