

Anomalous Coupling Studies with Intact Protons at the LHC

Particle Physics On The Plains

Justin Williams 14 October 2018

University of Kansas

Using the LHC as a photon collider, we can study the photoproduction of exclusive photon pairs

Proton tagging increases the sensitivity of standard LHC diphoton searches

- BSM effects can have contributions to the Ligh By Light cross-section
- Anomalous Couplings are motivated by many BSM theories

- Predicted by Composite Higgs, Kaluza Klein, Extra Dimensional models
- Couplings can be probed independently of models
- Effective 4-photon couplings $\zeta_i \sim 10^{-14} 10^{-13} \text{ GeV}^{-4} \text{ possible}^1$

 1 Anomalous gauge couplings from composite Higgs and warped extra dimensions JHEP 1403 (2014) 102

Justin Williams

CMS Precision Proton Spectrometer

- Joint CMS and TOTEM project²
- LHC magnets bend scattered protons outside of the beam envelope
- Intact protons are detected by Roman Pots \pm 200m from IP
- Calculate ξ which is the fractional momentum loss of the protons

Justin Williams

² https://cds.cern.ch/record/1753795

Dilepton Analysis With PPS

First observation ($>5.1\sigma)$ of the process at high mass using intact ${\rm protons}^3$

Performed at normal optics and pileup conditions

Proof that the alignment, optics, trigger, proton tagging, etc are working

³ JHEP 1807 (2018) 153

Justin Williams

Luminosity Comparison - 2017

Standard Model $\gamma\gamma$ Exclusive Production

- QED process dominates at high $m_{\gamma\gamma}^4$
- Cross section is well known
- W boson loop is the most significant at high $m_{\gamma\gamma}$

⁴ Light by light scattering with intact protons at the LHC: from Standard Model to new physics. 10.1007/JHEP02(2015)165 Justin Williams Particle Physics On The Plains 8 / 14

- Requesting two protons identified in forward detectors and two photons in central detector
- All backgrounds considered (DPE diphoton production, $H \rightarrow \gamma \gamma$, exclusive $\gamma \gamma$ production, dilepton + dijet misidentification, PU, Drell-Yan, ...)
- Pile up is the main source of background⁵

 5 Light by light scattering with intact protons at the LHC: from Standard Model to new physics. 10.1007/JHEP02(2015)165

Justin Williams

- The LHC collides packets of protons
- PU causes additional proton tracks from unrelated interactions
- For conditions of the LHC in 2016, can have up to 50 PU

Justin Williams

Dealing With Pile Up

Cut / Process	Signal (full)	Signal with (without) f.f (EFT)	Excl.	DPE	DY, di-jet + pile up	$\gamma\gamma + ext{pile up}$
$ \begin{bmatrix} 0.015 < \xi_{1,2} < 0.15, \\ p_{\text{T1},(2)} > 200, (100) \text{ GeV} \end{bmatrix} $	65	18 (187)	0.13	0.2	1.6	2968
$m_{\gamma\gamma} > 600 { m ~GeV}$	64	17 (186)	0.10	0	0.2	1023
$[p_{ m T2}/p_{ m T1}>0.95,\ \Delta \phi >\pi-0.01]$	64	17 (186)	0.10	0	0	80.2
$\sqrt{\xi_1\xi_2s}=m_{\gamma\gamma}\pm 3\%$	61	16 (175)	0.09	0	0	2.8
$ y_{\gamma\gamma}-y_{pp} < 0.03$	60	12 (169)	0.09	0	0	0

• Virtually no background after selection cuts for 300 fb^{-1}

Gain 2 orders of magnitude in sensitivity compared to standard CMS/ATLAS searches⁷

⁷ Light by light scattering with intact protons at the LHC: from Standard Model to new physics. 10.1007/JHEP02(2015)165 Justin Williams Particle Physics On The Plains 12 / 14

Study the production of axion-like particles via photon exchange with proton tagging

- CT-PPS provides a new sensitivity at high ALP mass
- Existing limits on the Axion Like Particle from ⁸

8 arXiv:1708.00443v2

Justin Williams

Particle Physics On The Plains

13 / 14

- PPS operated a near beam proton spectrometer for the 1st time at a HL collider
- The use of proton tagging can increase the sensitivity of CMS to anomalous couplings
- The analysis has a background free selection after exclusivity cuts
- We can also probe WW, $Z\gamma$, and ZZ final states⁹
- Potential for strongest limits to be placed on the 4-photon anomalous coupling

⁹Phys.Rev.D81 (2010) 074003

Questions?

Roman Pots

- Both horizontal and vertical Roman Pots
- Using silicon strips (2016), silicon pixels, and timing detectors
- Multiple planes to deduce tracks
- Susceptible to radiation damage

$\boldsymbol{\xi}$ calculations

Diphoton

$$\xi_+ = \frac{pT_1 * exp(\eta_1) + pT_2 * exp(\eta_2)}{\sqrt{s}}$$

$$\xi_{-} = \frac{pT_1 * exp(-\eta_1) + pT_2 * exp(-\eta_2)}{\sqrt{s}}$$

Diproton

$$m_{pp} = \sqrt{s} \sqrt{\xi_1 \xi_2}$$
$$y_{pp} = \frac{1}{2} \log \left(\frac{\xi_1}{\xi_2}\right)$$

Background estimation

