Anomalous Coupling Studies with Intact Protons at the LHC

Particle Physics On The Plains

Justin Williams
14 October 2018
University of Kansas

Introduction

Using the LHC as a photon collider, we can study the photoproduction of exclusive photon pairs

- Proton tagging increases the sensitivity of standard LHC diphoton searches
- BSM effects can have contributions to the Ligh By Light cross-section
- Anomalous Couplings are motivated by many BSM theories

Motivations For Anomalous Couplings

- Warped Extra Dimensions solve hierarchy problem of the SM
- Predicted by Composite Higgs, Kaluza Klein, Extra Dimensional models
- Couplings can be probed independently of models
- Effective 4-photon couplings $\zeta_{i} \sim 10^{-14}-10^{-13} \mathrm{GeV}^{-4}$ possible 1

[^0]
CMS Precision Proton Spectrometer

- Joint CMS and TOTEM project ${ }^{2}$
- LHC magnets bend scattered protons outside of the beam envelope
- Intact protons are detected by Roman Pots $\pm 200 \mathrm{~m}$ from IP
- Calculate ξ which is the fractional momentum loss of the protons

[^1]
Layout of PPS

Dilepton Analysis With PPS

First observation ($>5.1 \sigma$) of the process at high mass using intact protons ${ }^{3}$

Performed at normal optics and pileup conditions

Proof that the alignment, optics, trigger, proton tagging, etc are working

Luminosity Comparison - 2017

Integrated Luminosity 2017

Standard Model $\gamma \gamma$ Exclusive Production

- QED process dominates at high $\mathrm{m}_{\gamma \gamma}{ }^{4}$
- Cross section is well known
- W boson loop is the most significant at high $\mathrm{m}_{\gamma \gamma}$

${ }^{4}$ Light by light scattering with intact protons at the LHC: from Standard Model to new physics. 10.1007/JHEP02(2015)165

Other backgrounds

- Requesting two protons identified in forward detectors and two photons in central detector
- All backgrounds considered (DPE diphoton production, $\mathrm{H} \rightarrow \gamma \gamma$, exclusive $\gamma \gamma$ production, dilepton + dijet misidentification, PU, Drell-Yan, ...)
- Pile up is the main source of background ${ }^{5}$

${ }^{5}$ Light by light scattering with intact protons at the LHC: from Standard Model to new physics. 10.1007/JHEP02(2015)165

Pile Up at the LHC

- The LHC collides packets of protons
- PU causes additional proton tracks from unrelated interactions
- For conditions of the LHC in 2016, can have up to 50 PU

Dealing With Pile Up

Dealing With Pile Up

Cut / Process	Signal (full)	Signal with (without) f.f (EFT)	Excl.	DPE	DY, di-jet + pile up	$\gamma \gamma$ + pile up
$\left[0.015<\xi_{1,2}<0.15\right.$, $\left.p_{\mathrm{T} 1,(2)}>200,(100) \mathrm{GeV}\right]$ $m_{\gamma \gamma}>600 \mathrm{GeV}$	65	$18(187)$	0.13	0.2	1.6	2968
$\left[p_{\mathrm{T} 2} / p_{\mathrm{T} 1}>0.95\right.$,	64	$17(186)$	0.10	0	0.2	1023
$\|\Delta \phi\|>\pi-0.01]$	64	$17(186)$	0.10	0	0	80.2
$\sqrt{\xi_{1} \xi_{2} s=m_{\gamma \gamma} \pm 3 \%}$	61	$16(175)$	0.09	0	0	2.8
$\left\|y_{\gamma \gamma}-y_{p p}\right\|<0.03$	60	$12(169)$	0.09	0	0	0

- Virtually no background after selection cuts for $300 \mathrm{fb}^{-1}$
- Gain 2 orders of magnitude in sensitivity compared to standard CMS/ATLAS searches ${ }^{7}$

[^2]
Search For Axion-Like Particles

Study the production of axion-like particles via photon exchange with proton tagging

- CT-PPS provides a new sensitivity at high ALP mass
- Existing limits on the Axion Like Particle from ${ }^{8}$

Summary

- PPS operated a near beam proton spectrometer for the 1st time at a HL collider
- The use of proton tagging can increase the sensitivity of CMS to anomalous couplings
- The analysis has a background free selection after exclusivity cuts
- We can also probe WW, Z γ, and $\mathbf{Z Z}$ final states ${ }^{9}$
- Potential for strongest limits to be placed on the 4-photon anomalous coupling

Questions?

Roman Pots

- Both horizontal and vertical Roman Pots
- Using silicon strips (2016), silicon pixels, and timing detectors
- Multiple planes to deduce tracks
- Susceptible to radiation damage

ξ calculations

Diphoton

$$
\begin{gathered}
\xi_{+}=\frac{p T_{1} * \exp \left(\eta_{1}\right)+p T_{2} * \exp \left(\eta_{2}\right)}{\sqrt{s}} \\
\xi_{-}=\frac{p T_{1} * \exp \left(-\eta_{1}\right)+p T_{2} * \exp \left(-\eta_{2}\right)}{\sqrt{s}}
\end{gathered}
$$

Diproton

$$
\begin{gathered}
m_{p p}=\sqrt{s} \sqrt{\xi_{1} \xi_{2}} \\
y_{p p}=\frac{1}{2} \log \left(\frac{\xi_{1}}{\xi_{2}}\right)
\end{gathered}
$$

Background estimation

[^0]:

[^1]: $2_{\text {https://cds.cern.ch/record/1753795 }}$

[^2]: ${ }^{7}$ Light by light scattering with intact protons at the LHC: from Standard Model to new physics. 10.1007/JHEP02(2015)165

