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Next-to-Leading Order CalculationsSetting the Stage: The NLO

II. The Dipole Subtraction Method Barbara Jäger @ KEK, October 2006/ p. 3

real emission contributions
m + 1 parton kinematics

virtual corrections
m parton kinematics

σNLO =

∫

m+1
dσR +

∫

m
dσV

IR divergent
☞regularize in d = 4 − 2ε dim
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Next-to-Leading Order CalculationsThe Subtraction

II. The Dipole Subtraction Method Barbara Jäger @ KEK, October 2006/ p. 4

introduce local counterterm dσA with
same singularity structure as dσR:

σNLO =

∫

m+1

[
dσR − dσA

]
+

∫

m+1
dσA +

∫

m
dσV

︸ ︷︷ ︸
finite

can safely set ε → 0

perform integral numerically in
four dimension
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Born Phase Space (V+1 parton kinematics)

follows

p̂a =
1

2
(0, 0, x̂a, x̂a)

p̂b =
1

2
(0, 0,�x̂b, x̂b)

p̂(i)µ = p̂(i)T

⇣
sin �̂i, cos �̂i, sinh ⌘̂i, cosh ⌘̂i

⌘

Q̂µ =
⇣
~̂qT , ↵̂T sinh ⌘̂q, ↵̂T cosh ⌘̂q

⌘
where ↵̂T =

q
q̂2T +M2

V , (2.3)

where p̂a,b are the the incoming particle momenta with parton fractions xa,b, the jet mo-

menta are given by p̂(i)µ , and the vector boson momentum is given by Q̂µ. Starting from

the Born phase space, Eq. 2.1, we perform the following transformations:

dp̂i
(2⇡)3

�(p̂2i ) =
d~̂ ip

2(2⇡)3Ei
= dp̂(i)T d⌘̂id�̂i

 
p̂(i)T

2(2⇡)3

!

dQ̂

(2⇡)3
�(Q̂2 �M2

V ) =
d ~̂Q

2(2⇡)3Eq
=

d~̂qTd⌘̂q
2(2⇡)3

(where we used dq̂z = Êqd⌘̂q)

�(4)
⇣
p̂a + p̂b � p̂1 � · · ·� p̂n � Q̂

⌘
= �(2)

 
nX

i=1

~̂p(i)T + ~̂qT

!

⇥ �

 
1

2

p
S(x̂a + x̂b)�

nX

i=1

p̂(i)T cosh ⌘̂i � ↵̂T cosh ⌘̂q

!

⇥ �

 
1

2

p
S(x̂a � x̂b)�

nX

i=1

p̂(i)T sinh ⌘̂i � ↵̂T sinh ⌘̂q

!
.

(2.4)

After integrating ~̂qT , x̂a, x̂b over the Kronecker �-functions, we obtain

dx̂adx̂bd�(p̂ap̂b; Q̂, {p̂}n) =
1

(16⇡3)n+1

2

S

 
nY

i=1

dp̂(i)T d⌘̂id�̂i ⇥ p̂(i)T

!
⇥d⌘̂q⇥⇥(1�x̂1)⇥(1�x̂2) ,

(2.5)

with

~̂qT = �
nX

i=1

~̂p(i)T

x̂a =
1p
S

 
↵̂T e

⌘q +
nX

i=1

p̂(i)T e⌘̂i

!

x̂b =
1p
S

 
↵̂T e

�⌘q +
nX

i=1

p̂(i)T e�⌘̂i

!
, (2.6)

and the constraints for a physical event, x̂a,b  1, given by the ⇥-functions.
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Final State Forward Branching Phase Space
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Figure 1. A comparison between RAMBO and the FBPS generator of Eq. 2.10. The left graph
compares the vector boson transverse momentum, while the right graph compares the jet rapidity.
For Rambo the V+ 2 particle phase space was generated and a jet algorithm applied to obtain a
V + 1 jet inclusive final state. For the FBPS generator the observables are the Born momenta,
while the phase space weight is re-weighted by the bremsstrahlung event(s).

2.2 The Final State FBPS Generator

The final state generator begins with a V+ jet(s) Born event. One of the massless Born

jets is split into two partons generating a massive jet. To project back onto the massless

Born jet we scale the longitudinal momentum, ~pL12 of the massive jet, leaving invariant both

the transverse momentum and the rapidity of the jet

pa+pb�Q�p1�p2�P = pab�Q�p12�P = (pab+↵ pL12)�Q�(p12+↵ pL12)�P = p̂ab�Q̂�p̂J�P̂ ,

(2.7)

where Q̂ = Q, p̂ab = p̂a + p̂b = pa + pb + ↵ pL12, p̂J = p12 + ↵ pL12, p
L
12 = (p1 + p2)L =

(0, 0, (p1)z+(p2)z, E1+E2), P = P̂ = p3+ · · ·+pn and ↵ is given by the constraint p̂2J = 0.

Note that p̂a and p̂b are reconstructed from p̂ab using 1
2

p
S ⇥ x̂a,b = Êab ± (p̂z)ab in the

momenta reconstruction of Eq. 2.3.

To derive the FBPS generator we first encode the branching in a decomposition of

unity

1 = 2
q
(pL12)

2(pT12)
2

Z
d↵ dp̂J �(p̂

2
J)�(p̂J � p12 � ↵pL12) , (2.8)

insert it into the 3-particle phase space generator

d�3(pa, pb;Q, p1, p2) =
dQ

(2⇡)3
d p1
(2⇡)3

d p2
(2⇡)3

�(Q2 �M2
V )�(p

2
1)�(p

2
2)�(pa + pb �Q� p1 � p2) ,

(2.9)

and integrate p2 over �(p̂J � p12�↵ pL12) and subsequently integrate ↵ over �(p22) to obtain

the desired FBPS generator

d�FINAL
3 (pa, pb;Q, p1, p2) = d�2(p̂a, p̂b; Q̂, p̂J)⇥


d p1
(2⇡)3

�(p21)

�
⇥ J(p̂J , p1) . (2.10)
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Rapidity and transverse 
momentum is left invariant.
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Rapidity and transverse 
momentum is left invariant.
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Figure 2. A comparison between RAMBO and the FBPS generator of Eq. 2.16. The left graph
compares the vector boson pT , while the right graph compares the jet rapidity. For Rambo the V+
2 particle phase space was generated and a jet algorithm applied to obtain a V + 1 jet exclusive
final state. For the FBPS generator the observables are the Born momenta, while the phase space
weight is re-weighted by the bremsstrahlung event(s).

The momenta are given by pT2 = p̂TJ � pT1 , p
L
2 = �+p̂LJ � pL1 , pab = p̂ab � (1� �+) p̂LJ , Q = Q̂

and the Jacobian is given by

J(p̂J , p1) =

����
2

1� ��/�+

����⇥

s
(p̂TJ )

2

(p̂LJ )
2
=

����
2

1� ��/�+

���� , (2.11)

where

�± =
(p̂LJ · pL1 )±

q
(p̂TJ )

4 + 2(p̂LJ )
2(p̂TJ · pT1 ) + (p̂LJ · pL1 )2

(p̂LJ )
2

. (2.12)

The upper limit on the integration over p1 is determined by the condition on the parton

fractions xa,b < 1. Because the bremsstrahlung is generated mostly soft and/or collinear

with the jet momentum this condition can be implemented through a veto without any

noticeable impact on the performance of the generator.

The generator is a complete phase space generator, however it is designed to be used

in a di↵erent manner. This final state brancher is generated from a fixed Born event. By

repeatedly branching this event, one integrates over the jet mass and obtains the final state

part of the K-factor for this Born event. The FBPS generator of Eq. 2.10 is compared to

the RAMBO phase space generator [18] in Fig. 1.

2.3 The Initial State FBPS Generator

The initial state brancher is more complicated due to the fact that the extra parton gen-

erated is part of the beam jet and not added to the final state jets. As a consequence the

transverse momentum generated by the branching momentum will have to be balanced
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Figure 2. A comparison between RAMBO and the FBPS generator of Eq. 2.16. The left graph
compares the vector boson pT , while the right graph compares the jet rapidity. For Rambo the V+
2 particle phase space was generated and a jet algorithm applied to obtain a V + 1 jet exclusive
final state. For the FBPS generator the observables are the Born momenta, while the phase space
weight is re-weighted by the bremsstrahlung event(s).

The momenta are given by pT2 = p̂TJ � pT1 , p
L
2 = �+p̂LJ � pL1 , pab = p̂ab � (1� �+) p̂LJ , Q = Q̂

and the Jacobian is given by

J(p̂J , p1) =

����
2

1� ��/�+

����⇥

s
(p̂TJ )

2

(p̂LJ )
2
=

����
2

1� ��/�+

���� , (2.11)

where

�± =
(p̂LJ · pL1 )±

q
(p̂TJ )

4 + 2(p̂LJ )
2(p̂TJ · pT1 ) + (p̂LJ · pL1 )2

(p̂LJ )
2

. (2.12)

The upper limit on the integration over p1 is determined by the condition on the parton

fractions xa,b < 1. Because the bremsstrahlung is generated mostly soft and/or collinear

with the jet momentum this condition can be implemented through a veto without any

noticeable impact on the performance of the generator.

The generator is a complete phase space generator, however it is designed to be used

in a di↵erent manner. This final state brancher is generated from a fixed Born event. By

repeatedly branching this event, one integrates over the jet mass and obtains the final state

part of the K-factor for this Born event. The FBPS generator of Eq. 2.10 is compared to

the RAMBO phase space generator [18] in Fig. 1.

2.3 The Initial State FBPS Generator

The initial state brancher is more complicated due to the fact that the extra parton gen-

erated is part of the beam jet and not added to the final state jets. As a consequence the

transverse momentum generated by the branching momentum will have to be balanced
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Figure 1. A comparison between RAMBO and the FBPS generator of Eq. 2.10. The left graph
compares the vector boson transverse momentum, while the right graph compares the jet rapidity.
For Rambo the V+ 2 particle phase space was generated and a jet algorithm applied to obtain a
V + 1 jet inclusive final state. For the FBPS generator the observables are the Born momenta,
while the phase space weight is re-weighted by the bremsstrahlung event(s).

2.2 The Final State FBPS Generator

The final state generator begins with a V+ jet(s) Born event. One of the massless Born

jets is split into two partons generating a massive jet. To project back onto the massless

Born jet we scale the longitudinal momentum, ~pL12 of the massive jet, leaving invariant both

the transverse momentum and the rapidity of the jet

pa+pb�Q�p1�p2�P = pab�Q�p12�P = (pab+↵ pL12)�Q�(p12+↵ pL12)�P = p̂ab�Q̂�p̂J�P̂ ,

(2.7)

where Q̂ = Q, p̂ab = p̂a + p̂b = pa + pb + ↵ pL12, p̂J = p12 + ↵ pL12, p
L
12 = (p1 + p2)L =

(0, 0, (p1)z+(p2)z, E1+E2), P = P̂ = p3+ · · ·+pn and ↵ is given by the constraint p̂2J = 0.

Note that p̂a and p̂b are reconstructed from p̂ab using 1
2

p
S ⇥ x̂a,b = Êab ± (p̂z)ab in the

momenta reconstruction of Eq. 2.3.

To derive the FBPS generator we first encode the branching in a decomposition of

unity

1 = 2
q
(pL12)

2(pT12)
2

Z
d↵ dp̂J �(p̂

2
J)�(p̂J � p12 � ↵pL12) , (2.8)

insert it into the 3-particle phase space generator

d�3(pa, pb;Q, p1, p2) =
dQ

(2⇡)3
d p1
(2⇡)3

d p2
(2⇡)3

�(Q2 �M2
V )�(p

2
1)�(p

2
2)�(pa + pb �Q� p1 � p2) ,

(2.9)

and integrate p2 over �(p̂J � p12�↵ pL12) and subsequently integrate ↵ over �(p22) to obtain

the desired FBPS generator

d�FINAL
3 (pa, pb;Q, p1, p2) = d�2(p̂a, p̂b; Q̂, p̂J)⇥


d p1
(2⇡)3

�(p21)

�
⇥ J(p̂J , p1) . (2.10)

– 7 –
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by vector boson or absorbed into the jet. At higher orders this generates events with

transverse momentum of the vector boson below the transverse momentum cut on the jet

transverse momentum.

We first derive the generator which leaves the jet momentum pJ invariant. The cluster

map is given by

p̂ab � Q̂� p̂J = (p̂ab � ↵pL1 )� (Q̂� ↵pL1 � p1)� p̂J � p1 = pab �Q� pJ � p1 , (2.13)

where pJ = p̂J , pab = p̂ab � ↵pL1 , Q = Q̂� p̂T1 � (1 + ↵)pL1 and ↵ is given by the constraint

that Q2 = Q̂2 = M2
V .

The first step is again to encode the above branching in a partition of unity

1 = 2
q
(pL1 )

4 � 2(pL1 )
2(pT1 ·Q) + (pL1 ·Q)2

Z
d↵dQ̂ �(Q̂2�M2

V )�(Q̂�Q� pT1 � (1+↵)pL1 ) ,

(2.14)

and insert it in the 3 particle phase space

d�3(pa, pb;Q, pJ , p1) =
dQ

(2⇡)3
d pJ
(2⇡)3

d p1
(2⇡)3

�(Q2 �M2
V )�(p

2
J)�(p

2
1)�(pa + pb �Q� pJ � p1) .

(2.15)

By integrating Q over �(Q̂�Q� pT1 � (1 + ↵)pL1 ) and ↵ over �(Q2 �M2
V ) one obtains the

FBPS generator

d�INIT,I

3 (pa, pb;Q, pJ , p1) = d�2(p̂a, p̂b; Q̂, p̂J)⇥

d p1
(2⇡)3

�(p21)

�
⇥ J(Q̂, p1) . (2.16)

The momenta are given by QT = Q̂T �pT1 , QL = Q̂L� (1+↵)pL1 , pab = p̂ab�↵pL1 , pJ = p̂J
and the Jacobian is given by

J(Q̂, p1) =

s
(pL1 )

4 � 2(pL1 )
2(pT1 ·QT ) + (pL1 ·QL)2

(pL1 )
4 + 2(pL1 )

2(pT1 · Q̂T ) + (p̂L1 · Q̂L)2
, (2.17)

where

↵ =
(pL1 · Q̂L)� (pL1 )

2 �
q

(pL1 )
4 + 2(pL1 )

2(pT1 · Q̂T ) + (pL1 · Q̂L)2

(pL1 )
2

. (2.18)

Because the jet transverse momentum and rapidity is invariant under the branching the

Born phase space can be generated with the given jet cuts. The comparisons with RAMBO

are shown in Fig. 2.

Next we construct the generator, leaving the vector boson momentum Q invariant.

The clustering is now given by

p̂ab � Q̂� p̂J = (p̂ab � ↵pL1 )� Q̂� (p̂J � ↵pL1 � p1)� p1 = pab �Q� pJ � p1 , (2.19)

where Q = Q̂, pab = p̂ab � ↵pL1 , pJ = p̂J � pT1 � (1 + ↵)pL1 and ↵ is given by the constraint

that p2J = p̂2J .
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by vector boson or absorbed into the jet. At higher orders this generates events with

transverse momentum of the vector boson below the transverse momentum cut on the jet

transverse momentum.

We first derive the generator which leaves the jet momentum pJ invariant. The cluster

map is given by

p̂ab � Q̂� p̂J = (p̂ab � ↵pL1 )� (Q̂� ↵pL1 � p1)� p̂J � p1 = pab �Q� pJ � p1 , (2.13)

where pJ = p̂J , pab = p̂ab � ↵pL1 , Q = Q̂� p̂T1 � (1 + ↵)pL1 and ↵ is given by the constraint

that Q2 = Q̂2 = M2
V .

The first step is again to encode the above branching in a partition of unity

1 = 2
q

(pL1 )
4 � 2(pL1 )

2(pT1 ·Q) + (pL1 ·Q)2
Z

d↵dQ̂ �(Q̂2�M2
V )�(Q̂�Q� pT1 � (1+↵)pL1 ) ,

(2.14)

and insert it in the 3 particle phase space

d�3(pa, pb;Q, pJ , p1) =
dQ

(2⇡)3
d pJ
(2⇡)3

d p1
(2⇡)3

�(Q2 �M2
V )�(p

2
J)�(p

2
1)�(pa + pb �Q� pJ � p1) .

(2.15)

By integrating Q over �(Q̂�Q� pT1 � (1 + ↵)pL1 ) and ↵ over �(Q2 �M2
V ) one obtains the

FBPS generator

d�INIT,I

3 (pa, pb;Q, pJ , p1) = d�2(p̂a, p̂b; Q̂, p̂J)⇥

d p1
(2⇡)3

�(p21)

�
⇥ J(Q̂, p1) . (2.16)

The momenta are given by QT = Q̂T �pT1 , QL = Q̂L� (1+↵)pL1 , pab = p̂ab�↵pL1 , pJ = p̂J
and the Jacobian is given by

J(Q̂, p1) =

s
(pL1 )

4 � 2(pL1 )
2(pT1 ·QT ) + (pL1 ·QL)2

(pL1 )
4 + 2(pL1 )

2(pT1 · Q̂T ) + (p̂L1 · Q̂L)2
, (2.17)

where

↵ =
(pL1 · Q̂L)� (pL1 )

2 �
q

(pL1 )
4 + 2(pL1 )

2(pT1 · Q̂T ) + (pL1 · Q̂L)2

(pL1 )
2

. (2.18)

Because the jet transverse momentum and rapidity is invariant under the branching the

Born phase space can be generated with the given jet cuts. The comparisons with RAMBO

are shown in Fig. 2.

Next we construct the generator, leaving the vector boson momentum Q invariant.

The clustering is now given by

p̂ab � Q̂� p̂J = (p̂ab � ↵pL1 )� Q̂� (p̂J � ↵pL1 � p1)� p1 = pab �Q� pJ � p1 , (2.19)

where Q = Q̂, pab = p̂ab � ↵pL1 , pJ = p̂J � pT1 � (1 + ↵)pL1 and ↵ is given by the constraint

that p2J = p̂2J .
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Figure 2. A comparison between RAMBO and the FBPS generator of Eq. 2.16. The left graph
compares the vector boson pT , while the right graph compares the jet rapidity. For Rambo the V+
2 particle phase space was generated and a jet algorithm applied to obtain a V + 1 jet exclusive
final state. For the FBPS generator the observables are the Born momenta, while the phase space
weight is re-weighted by the bremsstrahlung event(s).

The momenta are given by pT2 = p̂TJ � pT1 , p
L
2 = �+p̂LJ � pL1 , pab = p̂ab � (1� �+) p̂LJ , Q = Q̂

and the Jacobian is given by

J(p̂J , p1) =

����
2

1� ��/�+

����⇥

s
(p̂TJ )

2

(p̂LJ )
2
=

����
2

1� ��/�+

���� , (2.11)

where

�± =
(p̂LJ · pL1 )±

q
(p̂TJ )

4 + 2(p̂LJ )
2(p̂TJ · pT1 ) + (p̂LJ · pL1 )2

(p̂LJ )
2

. (2.12)

The upper limit on the integration over p1 is determined by the condition on the parton

fractions xa,b < 1. Because the bremsstrahlung is generated mostly soft and/or collinear

with the jet momentum this condition can be implemented through a veto without any

noticeable impact on the performance of the generator.

The generator is a complete phase space generator, however it is designed to be used

in a di↵erent manner. This final state brancher is generated from a fixed Born event. By

repeatedly branching this event, one integrates over the jet mass and obtains the final state

part of the K-factor for this Born event. The FBPS generator of Eq. 2.10 is compared to

the RAMBO phase space generator [18] in Fig. 1.

2.3 The Initial State FBPS Generator

The initial state brancher is more complicated due to the fact that the extra parton gen-

erated is part of the beam jet and not added to the final state jets. As a consequence the

transverse momentum generated by the branching momentum will have to be balanced

– 8 –
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Initial State Forward Branching Phase Space 
- Type II

by vector boson or absorbed into the jet. At higher orders this generates events with

transverse momentum of the vector boson below the transverse momentum cut on the jet

transverse momentum.

We first derive the generator which leaves the jet momentum pJ invariant. The cluster

map is given by

p̂ab � Q̂� p̂J = (p̂ab � ↵pL1 )� (Q̂� ↵pL1 � p1)� p̂J � p1 = pab �Q� pJ � p1 , (2.13)

where pJ = p̂J , pab = p̂ab � ↵pL1 , Q = Q̂� p̂T1 � (1 + ↵)pL1 and ↵ is given by the constraint

that Q2 = Q̂2 = M2
V .

The first step is again to encode the above branching in a partition of unity

1 = 2
q
(pL1 )

4 � 2(pL1 )
2(pT1 ·Q) + (pL1 ·Q)2

Z
d↵dQ̂ �(Q̂2�M2

V )�(Q̂�Q� pT1 � (1+↵)pL1 ) ,

(2.14)

and insert it in the 3 particle phase space

d�3(pa, pb;Q, pJ , p1) =
dQ

(2⇡)3
d pJ
(2⇡)3

d p1
(2⇡)3

�(Q2 �M2
V )�(p

2
J)�(p

2
1)�(pa + pb �Q� pJ � p1) .

(2.15)

By integrating Q over �(Q̂�Q� pT1 � (1 + ↵)pL1 ) and ↵ over �(Q2 �M2
V ) one obtains the

FBPS generator

d�INIT,I

3 (pa, pb;Q, pJ , p1) = d�2(p̂a, p̂b; Q̂, p̂J)⇥

d p1
(2⇡)3

�(p21)

�
⇥ J(Q̂, p1) . (2.16)

The momenta are given by QT = Q̂T �pT1 , QL = Q̂L� (1+↵)pL1 , pab = p̂ab�↵pL1 , pJ = p̂J
and the Jacobian is given by

J(Q̂, p1) =

s
(pL1 )

4 � 2(pL1 )
2(pT1 ·QT ) + (pL1 ·QL)2

(pL1 )
4 + 2(pL1 )

2(pT1 · Q̂T ) + (p̂L1 · Q̂L)2
, (2.17)

where

↵ =
(pL1 · Q̂L)� (pL1 )

2 �
q

(pL1 )
4 + 2(pL1 )

2(pT1 · Q̂T ) + (pL1 · Q̂L)2

(pL1 )
2

. (2.18)

Because the jet transverse momentum and rapidity is invariant under the branching the

Born phase space can be generated with the given jet cuts. The comparisons with RAMBO

are shown in Fig. 2.

Next we construct the generator, leaving the vector boson momentum Q invariant.

The clustering is now given by

p̂ab � Q̂� p̂J = (p̂ab � ↵pL1 )� Q̂� (p̂J � ↵pL1 � p1)� p1 = pab �Q� pJ � p1 , (2.19)

where Q = Q̂, pab = p̂ab � ↵pL1 , pJ = p̂J � pT1 � (1 + ↵)pL1 and ↵ is given by the constraint

that p2J = p̂2J .
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Vector boson momentum is invariant.

Type II

by vector boson or absorbed into the jet. At higher orders this generates events with

transverse momentum of the vector boson below the transverse momentum cut on the jet

transverse momentum.

We first derive the generator which leaves the jet momentum pJ invariant. The cluster

map is given by

p̂ab � Q̂� p̂J = (p̂ab � ↵pL1 )� (Q̂� ↵pL1 � p1)� p̂J � p1 = pab �Q� pJ � p1 , (2.13)

where pJ = p̂J , pab = p̂ab � ↵pL1 , Q = Q̂� p̂T1 � (1 + ↵)pL1 and ↵ is given by the constraint

that Q2 = Q̂2 = M2
V .

The first step is again to encode the above branching in a partition of unity

1 = 2
q
(pL1 )

4 � 2(pL1 )
2(pT1 ·Q) + (pL1 ·Q)2

Z
d↵dQ̂ �(Q̂2�M2

V )�(Q̂�Q� pT1 � (1+↵)pL1 ) ,

(2.14)

and insert it in the 3 particle phase space

d�3(pa, pb;Q, pJ , p1) =
dQ

(2⇡)3
d pJ
(2⇡)3

d p1
(2⇡)3

�(Q2 �M2
V )�(p

2
J)�(p

2
1)�(pa + pb �Q� pJ � p1) .

(2.15)

By integrating Q over �(Q̂�Q� pT1 � (1 + ↵)pL1 ) and ↵ over �(Q2 �M2
V ) one obtains the

FBPS generator

d�INIT,I

3 (pa, pb;Q, pJ , p1) = d�2(p̂a, p̂b; Q̂, p̂J)⇥

d p1
(2⇡)3

�(p21)

�
⇥ J(Q̂, p1) . (2.16)

The momenta are given by QT = Q̂T �pT1 , QL = Q̂L� (1+↵)pL1 , pab = p̂ab�↵pL1 , pJ = p̂J
and the Jacobian is given by

J(Q̂, p1) =

s
(pL1 )

4 � 2(pL1 )
2(pT1 ·QT ) + (pL1 ·QL)2

(pL1 )
4 + 2(pL1 )

2(pT1 · Q̂T ) + (p̂L1 · Q̂L)2
, (2.17)

where

↵ =
(pL1 · Q̂L)� (pL1 )

2 �
q

(pL1 )
4 + 2(pL1 )

2(pT1 · Q̂T ) + (pL1 · Q̂L)2

(pL1 )
2

. (2.18)

Because the jet transverse momentum and rapidity is invariant under the branching the

Born phase space can be generated with the given jet cuts. The comparisons with RAMBO

are shown in Fig. 2.

Next we construct the generator, leaving the vector boson momentum Q invariant.

The clustering is now given by

p̂ab � Q̂� p̂J = (p̂ab � ↵pL1 )� Q̂� (p̂J � ↵pL1 � p1)� p1 = pab �Q� pJ � p1 , (2.19)

where Q = Q̂, pab = p̂ab � ↵pL1 , pJ = p̂J � pT1 � (1 + ↵)pL1 and ↵ is given by the constraint

that p2J = p̂2J .
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Figure 3. A comparison between RAMBO and the FBPS generator of Eq. 2.22. The left graph
compares the vector boson pT , while the right graph compares the jet rapidity. For Rambo the V+
2 particle phase space was generated and a jet algorithm applied to obtain a V + 1 jet exclusive
final state. For the FBPS generator the observables are the Born momenta, while the phase space
weight is re-weighted by the bremsstrahlung event(s).

Encoding the above branching in a partition of unity

1 = 2
q

(pL1 )
4 � 2(pL1 )

2(pT1 · pTJ ) + (pL1 · pLJ )2
Z

d↵dp̂J �(p̂2J)�(p̂J � pJ � pT1 � (1 + ↵)pL1 ) ,

(2.20)

inserting it in the 3-particle phase space,

d�3(pa, pb;Q, pJ , p1) =
dQ

(2⇡)3
d pJ
(2⇡)3

d p1
(2⇡)3

�(Q2 �M2
V )�(p

2
J)�(p

2
1)�(pa + pb �Q� pJ � p1)

(2.21)

and subsequently integrating pJ over �(p̂J � pJ � pT1 � (1 + ↵)pL1 ) and ↵ over �(p2J) one

obtains

d�INIT,II

3 (pa, pb;Q, pJ , p1) = d�2(p̂a, p̂b; Q̂, p̂J)⇥

d p1
(2⇡)3

�(p21)

�
⇥ J(p̂J , p1) . (2.22)

The momenta are given by pTJ = p̂TJ � pT1 , p
L
J = p̂LJ � (1 + ↵)pL1 , pab = p̂ab � ↵pL1 , Q = Q̂

and the Jacobian is given by

J(p̂J , p1) =

s
(pL1 )

4 � 2(pL1 )
2(pT1 · pTJ ) + (pL1 · pLJ )2

(pL1 )
4 + 2(pL1 )

2(pT1 · p̂TJ ) + (pL1 · p̂LJ )2
, (2.23)

where

↵ =
(pL1 · p̂LJ )� (pL1 )

2 �
q

(pL1 )
4 + 2(pL1 )

2(pT1 · p̂TJ ) + (pL1 · p̂LJ )2

(pL1 )
2

. (2.24)

Because the jet gets a kick due to the emission of the extra parton, we cannot impose the

jet cuts on the Born generator. The comparisons with RAMBO are shown in Fig. 3.

– 10 –



14

Phase Space Generator for V+1 jet
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Figure 5. The transverse momentum (left) and the rapidity (right) of the vector boson after initial

state radiating for a fixed jet momentum with transverse momentum p
jet
T = 50, 500, 1000, 5000 and

rapidity of 0.4 and born rapidity of the vector boson equal to �0.5.

However, the second term includes 2-jet final state contributions. We can further decom-

pose the second term

1 = ⇥(R��12)+⇥(�12�R)⇥
�
⇥(pTmin � pT1 ) +⇥(pT1 � pTmin)

�
⇥
�
⇥(pTmin � pT2 ) +⇥(pT2 � pTmin)

�
.

(3.4)

By requiring a 1-jet exclusive final state, we can filter out the 0-jet and 2-jet contributions,

resulting in

1 = ⇥(R��12) +⇥(�12 �R)
�
⇥(pTmin � pT1 )⇥(pT2 � pTmin) +⇥(pTmin � pT2 )⇥(pT1 � pTmin)

�

(3.5)

resulting in 3 sectors, one for each of the incoming beams and one for the final state jet.

It is straightforward to generalize this procedure to multiple jet final states.

The PP ! V + 1 exclusive jet phase space now becomes

d�exclusive
3 (pa, pb;Q, p1, p2) = d�3(pa, pb;Q, p1, p2)

⇥ [⇥(R��12) + ⇥(�12 �R)
�
⇥(pTmin � pT1 )⇥(pT2 � pTmin) +⇥(pTmin � pT2 )⇥(pT1 � pTmin)

�⇤

= d�2(p̂a, p̂b; Q̂, p̂J)⇥

d p1
(2⇡)3

�(p21)

�

⇥ [⇥(R��12)J
FINAL(p̂J , p1)�(M

FINAL({p̂}2 ! {p}2))

+⇥(�12 �R)
⇣
⇥(pT1 < pTMIN)⇥(pT2 > pTMIN) + (1 $ 2)

⌘
J INIT(Q̂, p1)�(M

INIT({p̂}2 ! {p}2))
i
.

(3.6)

By adding the initial state transverse momentum kick to the vector boson we leave the

jet momentum invariant. In Fig. 4 we show the validation of the cross section phase space

generator in Eq. 3.6 by comparing to the RAMBO phase space generator using a kT -jet

– 13 –
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Phase Space Generator for V+1 jet
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Figure 4. A comparison between RAMBO and the FBPS generator of Eq. 3.6. The left graph
compares the vector boson pT , while the right graph compares the jet rapidity. For Rambo the V+
2 particle phase space was generated and a jet algorithm applied to obtain a V + 1 jet exclusive
final state. For the FBPS generator the observables are the Born momenta, while the phase space
weight is re-weighted by the bremsstrahlung event(s).

3 The Phase Space Generator for V+jets Cross Sections

The final step is to construct a cross section phase space generator. This requires combining

the initial state and final state FBPS generators. The introduction of a jet algorithm will

do this by partitioning the phase space into individual sectors, one for each parton. The

phase space for the two sectors associated with the initial state partons will use an initial

state FBPS generator. While each sector associated with a jet will use the final state FBPS

generator.

The sectors are determined by the distance measures between the partons/clusters

given by the jet algorithm. For the kT -jet family of jet algorithms [24, 25] we have

dij = min
�
(pTi )

2p, (pTj )
2p
�
⇥
 
�2

ij

R2

!
; diB = (pTi )

2p , (3.1)

where

�2
ij = (⌘i � ⌘j)

2 + (�i � �j)
2 . (3.2)

For the example of PP ! V +1 jet we use the jet algorithm to separate the phase space

into two initial state bremsstrahlung sectors and the final state bremsstrahlung sector, i.e.,

the 0-jet, 1-jet, and 2-jet sectors. In this NLO example the jet algorithm simplifies signifi-

cantly which in general will not be the case. In order to separate final state bremsstrahlung

from other bremsstrahlung radiation, we use the decomposition of one to isolate the final

state radiation

1 = ⇥(R��12) +⇥(�12 �R) . (3.3)

– 12 –

For the FBPS, the observables are born momentum, while the born 
phase space is 
re-weighted by the bremsstrahlung event(s). 
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V+1 jet at NLO using FBPS (This is preliminary!) 

GEV

Inclusive XS

CT14nlo PDFs
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V+1 jet at NLO using FBPS (This is preliminary!) 

CT14nlo PDFs

Jet distributions 
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NLO Results by reweighting Born events 

K-factors at the level of Born events.
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Outlook

• The FBPS generator allows for the re-weighting of Born 
events and generation of n exclusive jets.

• Issues of missed binning in histograms is absent.

• Generalizability is a concern. However, FKS subtraction 
might be the answer.

• Finish the implementation of V+1 jets using the FBPS 
generator.


