A Forward Branching Phase Space Generator for Hadron Colliders

Dr. Terrance Figy
Assistant Professor
Department of Mathematics, Statistic, and Physics
Wichita State University
October 13, 2018
University of Kansas
Particle Physics on the Plains 2018

Wichita State UNIVERSITY

Introduction

https://arxiv.org/abs/1806.09678
A Forward Branching Phase Space
Generator for Hadron colliders Generator for Hadron colliders
Terrance M. Figy (Department of Mathematics, Statistics, and Physics, Wichita State University, Wichita, Kansas, USA), Walter T. Giele (Theory Group, Fermilab, Batavia, USA)

Next-to-Leading Order Calculations

real emission contributions $m+1$ parton kinematics

virtual corrections m parton kinematics

$$
\sigma^{N L O}=\int_{m+1} d \sigma^{R}+\int_{m} d \sigma^{V}
$$

IR divergent
regularize in $d=4-2 \varepsilon \mathrm{dim}$

Next-to-Leading Order Calculations

introduce local counterterm $d \sigma^{A}$ with
same singularity structure as $d \sigma^{R}$:

$$
\sigma^{N L O}=\int_{m+1} \underbrace{\left[d \sigma^{R}-d \sigma^{A}\right]}_{\text {finite }}+\int_{m+1} d \sigma^{A}+\int_{m} d \sigma^{V}
$$

can safely set $\varepsilon \rightarrow \mathbf{0}$
perform integral numerically in
four dimension

Born Phase Space (V+1 parton kinematics)

Born Phase Space (V+1 parton kinematics)

$$
\begin{equation*}
d \hat{x}_{a} d \hat{x}_{b} d \Phi\left(\hat{p}_{a} \hat{p}_{b} ; \hat{Q},\{\hat{p}\}_{n}\right)=\frac{1}{\left(16 \pi^{3}\right)^{n+1}} \frac{2}{S}\left(\prod_{i=1}^{n} d \hat{p}_{T}^{(i)} d \hat{\eta}_{i} d \hat{\phi}_{i} \times \hat{p}_{T}^{(i)}\right) \times d \hat{\eta}_{q} \times \Theta\left(1-\hat{x}_{1}\right) \Theta\left(1-\hat{x}_{2}\right), \tag{2.5}
\end{equation*}
$$

with

$$
\begin{align*}
& \hat{\vec{q}}_{T}=-\sum_{i=1}^{n} \hat{\bar{p}}_{T}^{(i)} \\
& \hat{x}_{a}=\frac{1}{\sqrt{S}}\left(\hat{\alpha}_{T} e^{\eta_{q}}+\sum_{i=1}^{n} \hat{p}_{T}^{(i)} e^{\hat{\eta}_{i}}\right) \\
& \hat{x}_{b}=\frac{1}{\sqrt{S}}\left(\hat{\alpha}_{T} e^{-\eta_{q}}+\sum_{i=1}^{n} \hat{p}_{T}^{(i)} e^{-\hat{\eta}_{i}}\right), \tag{2.6}
\end{align*}
$$

Final State Forward Branching Phase Space

Final State Forward Branching Phase Space

Final State Forward Branching Phase Space

Initial State Forward Branching Phase Space - Type I

Type I

Initial State Forward Branching Phase Space
 - Type I

Initial State Forward Branching Phase Space
 - Type II

Type II

Initial State Forward Branching Phase Space - Type II

Phase Space Generator for $\mathrm{V}+1$ jet

$$
\begin{aligned}
& d \Phi_{3}^{\text {exclusive }}\left(p_{a}, p_{b} ; Q, p_{1}, p_{2}\right)=d \Phi_{3}\left(p_{a}, p_{b} ; Q, p_{1}, p_{2}\right) \\
& \times\left[\Theta\left(R-\Delta_{12}\right)+\Theta\left(\Delta_{12}-R\right)\left(\Theta\left(p_{\min }^{T}-p_{1}^{T}\right) \Theta\left(p_{2}^{T}-p_{\min }^{T}\right)+\Theta\left(p_{\min }^{T}-p_{2}^{T}\right) \Theta\left(p_{1}^{T}-p_{\min }^{T}\right)\right)\right] \\
& = \\
& \quad d \Phi_{2}\left(\hat{p}_{a}, \hat{p}_{b} ; \hat{Q}, \hat{p}_{J}\right) \times\left[\frac{d p_{1}}{(2 \pi)^{3}} \delta\left(p_{1}^{2}\right)\right] \\
& \times\left[\Theta\left(R-\Delta_{12}\right) J^{\mathrm{FINAL}}\left(\hat{p}_{J}, p_{1}\right) \delta\left(M^{\mathrm{FINAL}}\left(\{\hat{p}\}_{2} \rightarrow\{p\}_{2}\right)\right)\right. \\
& \left.\quad+\Theta\left(\Delta_{12}-R\right)\left(\Theta\left(p_{1}^{T}<p_{\mathrm{MIN}}^{T}\right) \Theta\left(p_{2}^{T}>p_{\mathrm{MIN}}^{T}\right)+(1 \leftrightarrow 2)\right) J^{\mathrm{INIT}}\left(\hat{Q}, p_{1}\right) \delta\left(M^{\mathrm{INIT}}\left(\{\hat{p}\}_{2} \rightarrow\{p\}_{2}\right)\right)\right] .
\end{aligned}
$$

Phase Space Generator for $\mathrm{V}+1$ jet

For the FBPS, the observables are born momentum, while the born phase space is
re-weighted by the bremsstrahlung event(s).

$\mathbf{V}+1$ jet at NLO using FBPS (This is preliminary!)

Inclusive XS

$$
\begin{aligned}
& \sqrt{S}=14 \mathrm{TeV} \\
& p_{T}^{\mathrm{jet}}>50 \quad \text { GEV } \\
& \left|\eta_{\mathrm{jet}}\right|<3, \mu_{R}=\mu_{F}=M_{Z}
\end{aligned}
$$

CT14nlo PDFs

V+1 jet at NLO using FBPS (This is preliminary!)

Jet distributions

$$
\sqrt{S}=14 \mathrm{TeV}
$$

CT14nlo PDFs

NLO Results by reweighting Born events

$$
\begin{gathered}
d \sigma^{\mathrm{LO}}\left(\left\{\left(p_{T}, \eta, \phi\right)_{i}\right\}\right)=\sum_{a, b} \frac{f_{a}\left(x_{1}\right) f_{b}\left(x_{2}\right)}{2 s_{12}} \mathcal{M}_{a b}^{(0)}\left(\left\{\left(p_{T}, \eta, \phi\right)_{i}\right\}\right) \\
d \sigma^{\mathrm{NLO}}\left(\left\{\left(p_{T}, \eta, \phi\right)_{i}\right\}\right)=\sum_{a, b} \frac{f_{a}\left(x_{1}\right) f_{b}\left(x_{2}\right)}{2 s_{12}} \mathcal{M}_{a b}^{(0)}\left(\left\{\left(p_{T}, \eta, \phi\right)_{i}\right\}\right) \\
\times\left(1+V\left(\left\{\left(p_{T}, \eta, \phi\right)_{i}\right\}\right)+\int d k_{B} \frac{s_{12}}{\hat{s}_{12}} \frac{f_{a}\left(\hat{x}_{1}\right) f_{b}\left(\hat{x}_{2}\right)}{f_{a}\left(x_{1}\right) f_{b}\left(x_{2}\right)} \frac{\mathcal{M}_{a b}^{(1)}\left(\left\{\left(p_{T}, \eta, \phi\right)_{i}\right\}, k_{B}\right)}{\mathcal{M}_{a b}^{(0)}\left(\left\{\left(p_{T}, \eta, \phi\right)_{i}\right\}\right)}\right)
\end{gathered}
$$

K-factors at the level of Born events.

Outlook

- The FBPS generator allows for the re-weighting of Born events and generation of n exclusive jets.
- Issues of missed binning in histograms is absent.
- Generalizability is a concern. However, FKS subtraction might be the answer.
- Finish the implementation of $\mathrm{V}+1$ jets using the FBPS generator.

