A Forward Branching Phase Space Generator for Hadron Colliders

Dr. Terrance Figy

Assistant Professor

Department of Mathematics, Statistic, and Physics

Wichita State University

October 13, 2018

University of Kansas

Particle Physics on the Plains 2018

WICHITA STATE UNIVERSITY

Introduction

https://arxiv.org/abs/1806.09678

A Forward Branching Phase Space Generator for Hadron colliders

<u>Terrance M. Figy</u> (Department of Mathematics, Statistics, and Physics, Wichita State University, Wichita, Kansas, USA), <u>Walter T. Giele</u> (Theory Group, Fermilab, Batavia, USA)

Next-to-Leading Order Calculations

real emission contributions m+1 parton kinematics

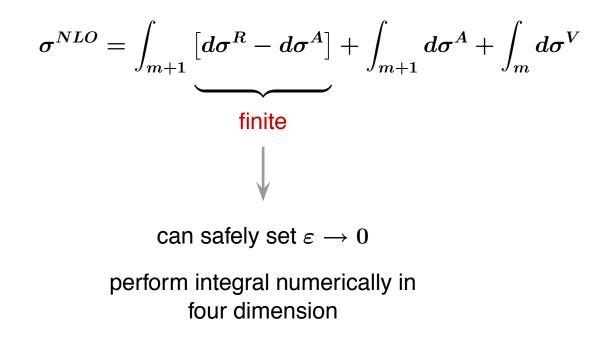
virtual corrections m parton kinematics

 $\sigma^{NLO} = \int_{m+1} d\sigma^R + \int_m d\sigma^V$

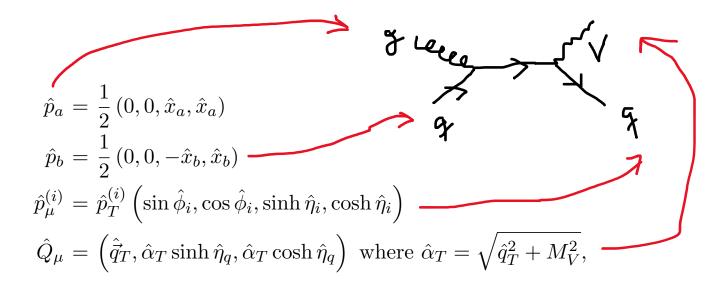
IR divergent $\$ regularize in $d = 4 - 2\varepsilon$ dim

Next-to-Leading Order Calculations

introduce local counterterm $d\sigma^A$ with same singularity structure as $d\sigma^R$:



Born Phase Space (V+1 parton kinematics)



Born Phase Space (V+1 parton kinematics)

$$d\hat{x}_a d\hat{x}_b d\Phi(\hat{p}_a \hat{p}_b; \hat{Q}, \{\hat{p}\}_n) = \frac{1}{(16\pi^3)^{n+1}} \frac{2}{S} \left(\prod_{i=1}^n d\hat{p}_T^{(i)} d\hat{\eta}_i d\hat{\phi}_i \times \hat{p}_T^{(i)} \right) \times d\hat{\eta}_q \times \Theta(1 - \hat{x}_1) \Theta(1 - \hat{x}_2) ,$$
(2.5)

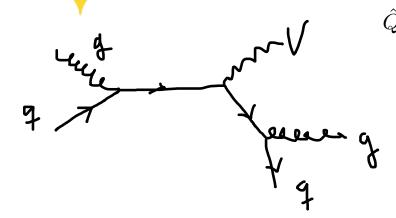
with

$$\hat{\vec{q}}_{T} = -\sum_{i=1}^{n} \hat{\vec{p}}_{T}^{(i)}$$

$$\hat{x}_{a} = \frac{1}{\sqrt{S}} \left(\hat{\alpha}_{T} e^{\eta_{q}} + \sum_{i=1}^{n} \hat{p}_{T}^{(i)} e^{\hat{\eta}_{i}} \right)$$

$$\hat{x}_{b} = \frac{1}{\sqrt{S}} \left(\hat{\alpha}_{T} e^{-\eta_{q}} + \sum_{i=1}^{n} \hat{p}_{T}^{(i)} e^{-\hat{\eta}_{i}} \right) ,$$
(2.6)

Final State Forward Branching Phase Space



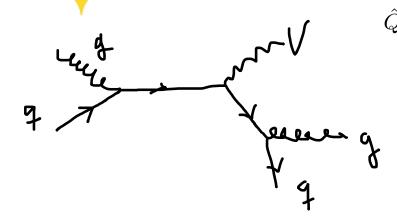
$$\hat{Q} = Q, \ \hat{p}_{ab} = \hat{p}_a + \hat{p}_b = p_a + p_b + \alpha p_{12}^L,$$

 $\hat{p}_J = p_{12} + \alpha p_{12}^L, \ p_{12}^L = (p_1 + p_2)_L$

Rapidity and transverse momentum is left invariant.

$$d\Phi_3^{\text{FINAL}}(p_a, p_b; Q, p_1, p_2) = d\Phi_2(\hat{p}_a, \hat{p}_b; \hat{Q}, \hat{p}_J) \times \left[\frac{d\,p_1}{(2\pi)^3}\,\,\delta(p_1^2)\right] \times J(\hat{p}_J, p_1) \,\,.$$

Final State Forward Branching Phase Space



$$\hat{p} = Q, \ \hat{p}_{ab} = \hat{p}_a + \hat{p}_b = p_a + p_b + \alpha p_{12}^L,$$

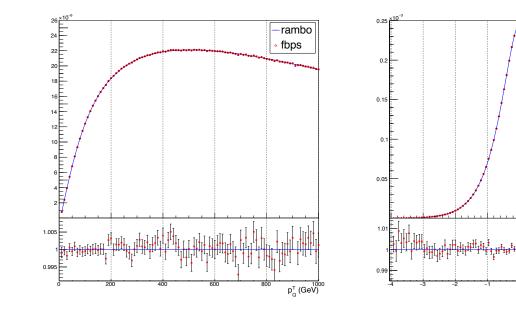
 $\hat{p}_J = p_{12} + \alpha p_{12}^L, \ p_{12}^L = (p_1 + p_2)_L$

Rapidity and transverse momentum is left invariant.

$$J(\hat{p}_J, p_1) = \left| \frac{2}{1 - \beta_- / \beta_+} \right| \times \sqrt{\frac{(\hat{p}_J^T)^2}{(\hat{p}_J^L)^2}} = \left| \frac{2}{1 - \beta_- / \beta_+} \right| ,$$

$$\beta_{\pm} = \frac{(\hat{p}_J^L \cdot p_1^L) \pm \sqrt{(\hat{p}_J^T)^4 + 2(\hat{p}_J^L)^2(\hat{p}_J^T \cdot p_1^T) + (\hat{p}_J^L \cdot p_1^L)^2}}{(\hat{p}_J^L)^2}$$

Final State Forward Branching Phase Space

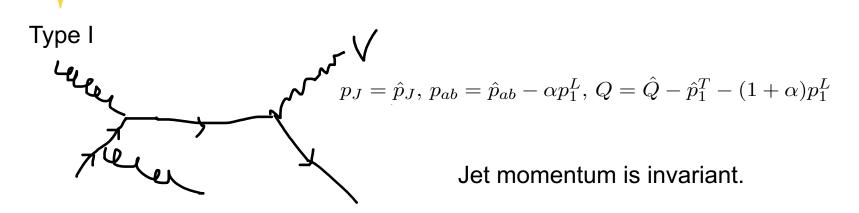


-rambo

 $\eta_{_{\text{JET}}}$

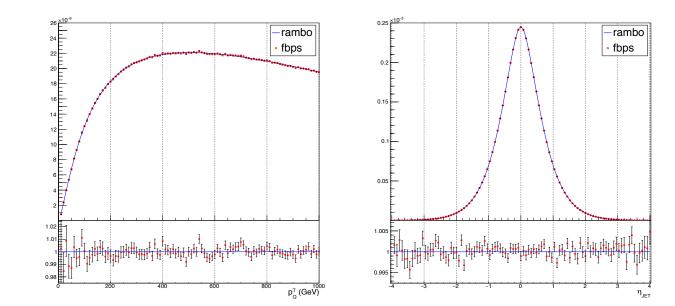
fbps

Initial State Forward Branching Phase Space – Type I

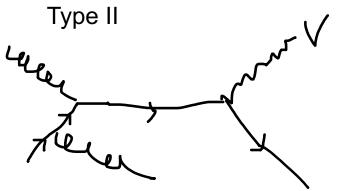


$$d\Phi_3^{\text{INIT,I}}(p_a, p_b; Q, p_J, p_1) = d\Phi_2(\hat{p}_a, \hat{p}_b; \hat{Q}, \hat{p}_J) \times \left[\frac{d\,p_1}{(2\pi)^3}\,\,\delta(p_1^2)\right] \times J(\hat{Q}, p_1) \,\,.$$

Initial State Forward Branching Phase Space – Type I



Initial State Forward Branching Phase Space - Type II



 $Q = \hat{Q}, \ p_{ab} = \hat{p}_{ab} - \alpha p_1^L, \ p_J = \hat{p}_J - p_1^T - (1+\alpha)p_1^L$

Vector boson momentum is invariant.

$$d\Phi_3^{\text{INIT,I}}(p_a, p_b; Q, p_J, p_1) = d\Phi_2(\hat{p}_a, \hat{p}_b; \hat{Q}, \hat{p}_J) \times \left[\frac{d\,p_1}{(2\pi)^3}\,\,\delta(p_1^2)\right] \times J(\hat{Q}, p_1) \,\,.$$

Initial State Forward Branching Phase Space - Type II



rambo

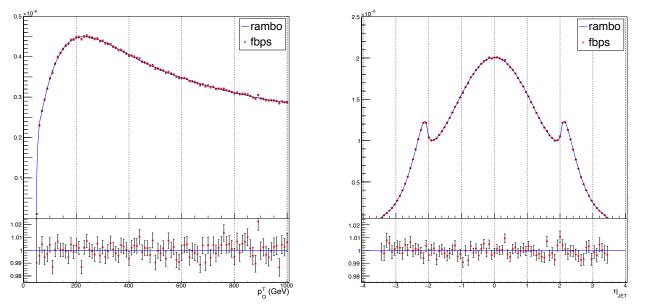
 η_{JET}

fbps

Phase Space Generator for V+1 jet

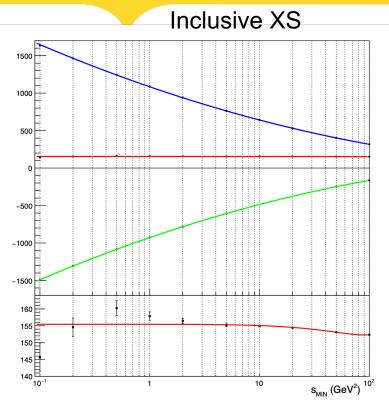
$$\begin{split} d\Phi_{3}^{\text{exclusive}}(p_{a}, p_{b}; Q, p_{1}, p_{2}) &= d\Phi_{3}(p_{a}, p_{b}; Q, p_{1}, p_{2}) \\ \times \left[\Theta(R - \Delta_{12}) + \Theta(\Delta_{12} - R) \left(\Theta(p_{\min}^{T} - p_{1}^{T})\Theta(p_{2}^{T} - p_{\min}^{T}) + \Theta(p_{\min}^{T} - p_{2}^{T})\Theta(p_{1}^{T} - p_{\min}^{T})\right)\right] \\ &= d\Phi_{2}(\hat{p}_{a}, \hat{p}_{b}; \hat{Q}, \hat{p}_{J}) \times \left[\frac{d p_{1}}{(2\pi)^{3}} \,\delta(p_{1}^{2})\right] \\ \times \left[\Theta(R - \Delta_{12})J^{\text{FINAL}}(\hat{p}_{J}, p_{1})\delta(M^{\text{FINAL}}(\{\hat{p}\}_{2} \to \{p\}_{2})) \\ &+ \Theta(\Delta_{12} - R)\left(\Theta(p_{1}^{T} < p_{\min}^{T})\Theta(p_{2}^{T} > p_{\min}^{T}) + (1 \leftrightarrow 2)\right)J^{\text{INIT}}(\hat{Q}, p_{1})\delta(M^{\text{INIT}}(\{\hat{p}\}_{2} \to \{p\}_{2}))\right] \end{split}$$

Phase Space Generator for V+1 jet



For the FBPS, the observables are born momentum, while the born phase space is re-weighted by the bremsstrahlung event(s).

V+1 jet at NLO using FBPS (This is preliminary!)



 \sqrt{S} =14 TeV

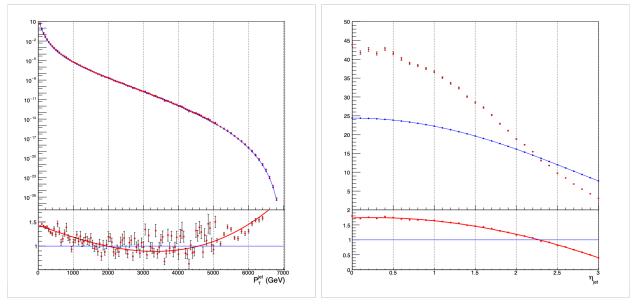
$$p_T^{\text{jet}} > 50 \quad \text{GEV}$$

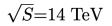
$$|\eta_{\rm jet}| < 3, \, \mu_R = \mu_F = M_Z$$

CT14nlo PDFs

V+1 jet at NLO using FBPS (This is preliminary!)

Jet distributions





CT14nlo PDFs

NLO Results by reweighting Born events

$$d\sigma^{\rm LO}(\{(p_T,\eta,\phi)_i\}) = \sum_{a,b} \frac{f_a(x_1)f_b(x_2)}{2s_{12}} \mathcal{M}_{ab}^{(0)}(\{(p_T,\eta,\phi)_i\})$$

$$d\sigma^{\text{NLO}}(\{(p_T, \eta, \phi)_i\}) = \sum_{a,b} \frac{f_a(x_1) f_b(x_2)}{2s_{12}} \mathcal{M}_{ab}^{(0)}(\{(p_T, \eta, \phi)_i\})$$
$$\times \left(1 + V(\{(p_T, \eta, \phi)_i\}) + \int dk_B \frac{s_{12}}{\hat{s}_{12}} \frac{f_a(\hat{x}_1) f_b(\hat{x}_2)}{f_a(x_1) f_b(x_2)} \frac{\mathcal{M}_{ab}^{(1)}(\{(p_T, \eta, \phi)_i\}, k_B)}{\mathcal{M}_{ab}^{(0)}(\{(p_T, \eta, \phi)_i\})}\right)$$

K-factors at the level of Born events.

1

Outlook

- The FBPS generator allows for the re-weighting of Born events and generation of n exclusive jets.
- Issues of missed binning in histograms is absent.
- Generalizability is a concern. However, FKS subtraction might be the answer.
- Finish the implementation of V+1 jets using the FBPS generator.

