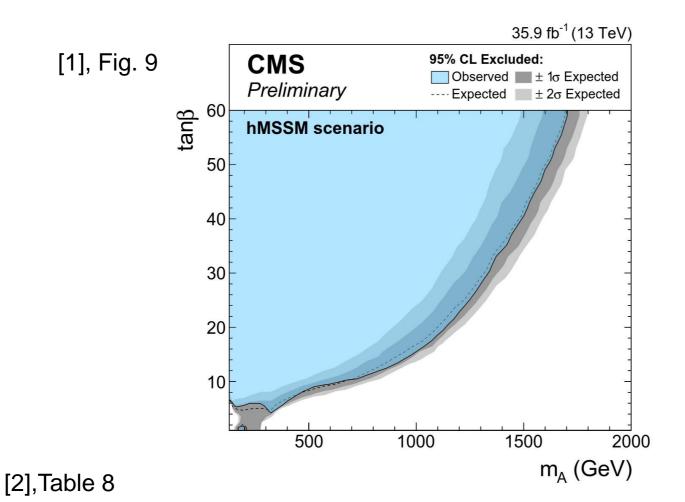

Interference Effect in Di-Higgs Production in SUSY models (MSSM with Gauge Extensions)

Yu Hang Ng Peisi Huang

Motivation



Interference term: $|\mathcal{M}|_{int}^2 = 2Re[\mathcal{M}_{Res} \times \mathcal{M}_{NR}^*]$

- Where in the parameter space (tanβ,m_A) does the interference term is large?
- · Why?

Choosing Region of Parameter Space

- Experimental Constraint:
- 1. Search for additional neutral MSSM Higgs bosons in the di-tau final state in pp collisions at $s^{1/2} = 13$ TeV [1]
- 2. Precision measurement of Higgs Couplings [2]
- Obtained upper Bound of $\tan \beta$ from (1).
- Obtained lower Bound of m_A by comparing $\kappa_i = \frac{g_i^{MSSM}}{g_i^{SM}}$ calculated using FeynHiggs program with the experimental data from (2). (~220 GeV)

Parameter																	
κ_{W}			κ_Z			κ_t			κ_b			$\kappa_{ au}$			κ_{μ}		
Best fit	Best fit Uncertainty		Best fit	Uncertainty		Best fit	Uncertainty		Best fit	Uncertainty		Best fit	Uncertainty		Best fit	Uncertainty	
value	Stat.	Syst.	value	Stat.	Syst.	value	Stat.	Syst.	value	Stat.	Syst.	value	Stat.	Syst.	value	Stat.	Syst.
$1.09 \begin{array}{c} +0.12 \\ -0.17 \end{array}$	$^{+0.08}_{-0.16}$	$^{+0.09}_{-0.04}$	$0.99 \begin{array}{c} +0.11 \\ -0.12 \end{array}$	$^{+0.09}_{-0.10}$	$^{+0.07}_{-0.07}$	$1.11 \begin{array}{c} +0.12 \\ -0.11 \end{array}$	$^{+0.08}_{-0.07}$	$^{+0.09}_{-0.08}$	$-1.10 \begin{array}{c} +0.33 \\ -0.24 \end{array}$	$+0.29 \\ -0.16$	$^{+0.15}_{-0.17}$	$1.01 \begin{array}{c} +0.16 \\ -0.20 \end{array}$	$^{+0.11}_{-0.17}$	$^{+0.12}_{-0.10}$	$0.82 \begin{array}{c} +0.50 \\ -0.82 \end{array}$	$^{+0.49}_{-0.82}$	$^{+0.11}_{-0.00}$
$\binom{+0.11}{-0.10}$	$\binom{+0.08}{-0.08}$	$\binom{+0.06}{-0.06}$	$\binom{+0.11}{-0.11}$	$\binom{+0.09}{-0.09}$	$\binom{+0.06}{-0.06}$	$\binom{+0.11}{-0.12}$	$\binom{+0.07}{-0.08}$	$\binom{+0.09}{-0.09}$	$\binom{+0.23}{-0.22}$	$\binom{+0.16}{-0.15}$	$\binom{+0.16}{-0.16}$	$\binom{+0.17}{-0.15}$	$\binom{+0.12}{-0.10}$	$\binom{+0.12}{-0.11}$	$\binom{+0.45}{-1.01}$	$\binom{+0.44}{-1.00}$	$\binom{+0.07}{-0.11}$

Fixing m_h by SU(2)⊗SU(2) Gauge Extensions of MSSM

Reason: m_h is not around 125 GeV in the chosen region of parameter space.

Fixing m_h by SU(2)⊗SU(2) Gauge Extensions of MSSM

The effect of SU(2)⊗SU(2) Gauge Extensions is: [3]

$$g^2 \rightarrow g^2 \Delta$$
,

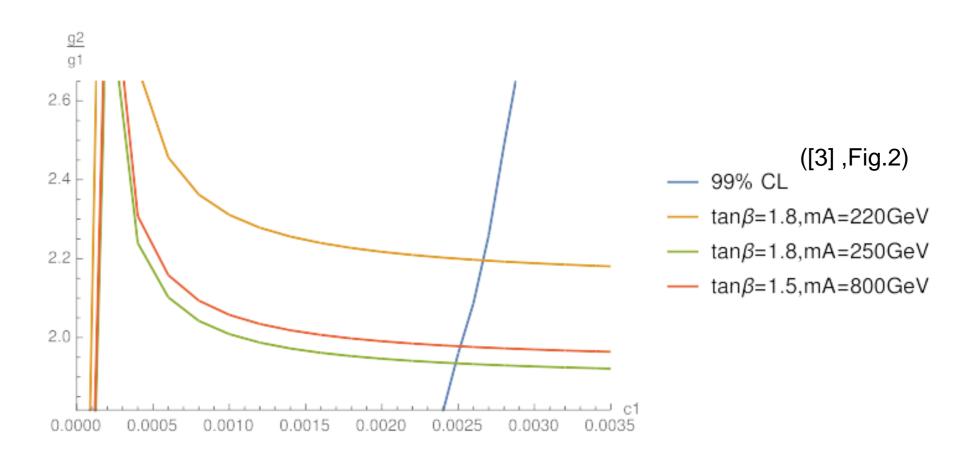
where
$$\Delta = \frac{1 + \frac{4m_{\sum 1}^2}{u^2 g_1^2}}{1 + \frac{4m_{\sum 1}^2}{u^2 g_1^2 + g_2^2}}$$
 , $\frac{1}{g^2} = \frac{1}{g_1^2} + \frac{1}{g_2^2}$

$$m_h^2 = \frac{1}{2} \left[m_A^2 + {m_Z'}^2 - \sqrt{\left(m_A^2 + {m_Z'}^2 \right)^2 - 4m_A^2 {m_Z'}^2 \cos^2 2\beta} \right]$$
$${m_Z'}^2 = \frac{1}{4} (g^2 \Delta + g_Y^2) v^2$$

 $(m_{\Sigma}^2 = M_{\widetilde{\Sigma}}^{\dagger} M_{\widetilde{\Sigma}} + m_{\Sigma}'^2)$; m_{Σ}' is soft mass term corresponds to scalar component of Σ supermultiplet; $M_{\widetilde{\Sigma}}$ is the mass corresponds to fermionic component of Σ . Σ is bidoublet chiral supermultiplet that links the two SU(2) gauge groups.)

Fixing m_h by SU(2)⊗SU(2) Gauge Extensions of MSSM

- Other consequences:
- 1.modified ghhh, gHhh


$$ghhh = \frac{-3i}{2}\cos 2\alpha \sin(\beta + \alpha) \frac{gm_z}{\cos \theta_w}$$

$$gHhh = \frac{-i}{2} \left[2\sin 2\alpha \sin(\beta + \alpha) - \cos 2\alpha \cos(\beta + \alpha) \right] \frac{gm_z}{\cos \theta_w}$$

$$\frac{gm_z}{\cos \theta_w} = \frac{v}{2} (g^2 + g_Y^2) \rightarrow \frac{v}{2} (g^2 \Delta + g_Y^2)$$

2.EW observables (since they are related to structure of gauge symmetry)

Precision EW Constraints

$$m_{\Sigma}=10 TeV, c_1=\frac{1}{2}{\left(\frac{g}{g_1}\right)}^4{\left(\frac{v}{u}\right)}^2$$
 ,and required m_h=125GeV

Understanding Interference Term

$$\frac{d\hat{\sigma}}{d\hat{t}} = \frac{\alpha_{W}^{2}\alpha_{S}^{2}}{2^{15}\pi M_{W}^{4}\hat{s}^{2}}(|gauge1|^{2} + |gauge2|^{2})$$

$$gauge1 = gauge1(\triangle) + gauge1(\square)$$

$$-gauge1(\triangle) = A^{H}_{\triangle} + A^{h}_{\triangle}$$

$$-gauge1(\square) = A^{h}_{\square}$$

$$A^{\mathrm{H}}_{\triangle} = -6m_h^2 C_{Hhh} C_{Htt} F_{\triangle} \frac{\hat{s}}{\hat{s} - m_H^2 + i\Gamma_H m_H}$$

(Form factors in [5], App. A)

$$\begin{split} \mathbf{A^{h}}_{\triangle} &= -6m_{h}^{2}C_{hhh}C_{htt}F_{\triangle}\frac{\hat{s}}{\hat{s}-m_{h}^{2}+i\Gamma_{h}m_{h}} \approx -6m_{h}^{2}C_{hhh}C_{htt}F_{\triangle}\frac{\hat{s}}{\hat{s}-m_{h}^{2}}\\ \mathbf{A^{h}}_{\Box} &= -4C_{htt}^{2}F_{\Box}\,\hat{s}\\ a_{Res} &= -6m_{h}^{2}C_{Hhh}C_{Htt}F_{\triangle} \end{split}$$

Understanding Interference Term

$$|gauge1|^{2} = |A^{H}_{\triangle} + A^{h}_{\triangle} + A^{h}_{\Box}|^{2}$$

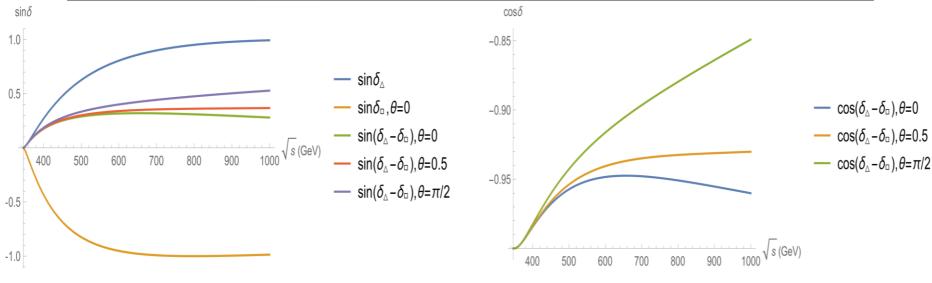
$$= |A^{H}_{\triangle}|^{2} + |A^{h}_{\triangle} + A^{h}_{\Box}|^{2} + 2Re[A^{H}_{\triangle} \times (A^{h}_{\triangle} + A^{h}_{\Box})^{*}]$$

$$2Re[A^{H}_{\triangle} \times (A^{h}_{\triangle} + A^{h}_{\Box})^{*}] = 2Re[A^{H}_{\triangle} \times A^{h}_{\triangle}^{*}] + 2Re[A^{H}_{\triangle} \times A^{h}_{\Box}^{*}]$$

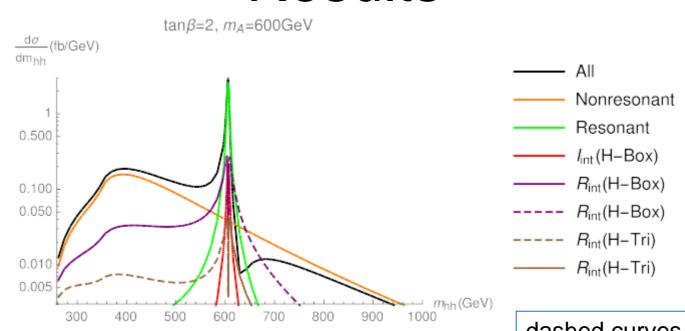
$$Let A^{H}_{\triangle} = |a_{Res}|e^{i\delta_{Res}} \frac{\hat{s}}{\hat{s} - m_{H}^{2} + i\Gamma_{H}m_{H}} = |a_{Res}|e^{i\delta_{Res}} \hat{s} \frac{\hat{s} - m_{H}^{2} - i\Gamma_{H}m_{H}}{(\hat{s} - m_{H}^{2})^{2} + (\Gamma_{H}m_{H})^{2}},$$

$$A^{h}_{\triangle} = |A^{h}_{\triangle}|e^{i\delta_{NR,\triangle}}, \qquad A^{h}_{\Box} = |A^{h}_{\Box}|e^{i\delta_{NR,\Box}}$$

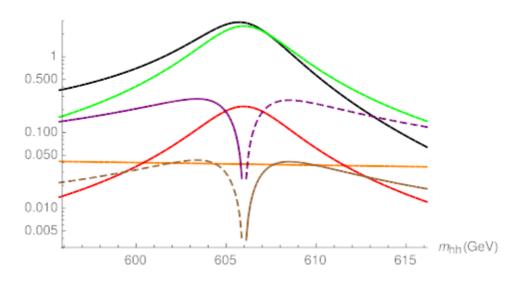
$$2Re[A^{H}_{\triangle} \times A_{NR}^{*}] = 2Re[|a_{Res}|\hat{s}|A_{NR}|e^{i(\delta_{Res} - \delta_{NR})} \frac{\hat{s} - m_{H}^{2} - i\Gamma_{H}m_{H}}{(\hat{s} - m_{H}^{2})^{2} + (\Gamma_{H}m_{H})^{2}}]$$

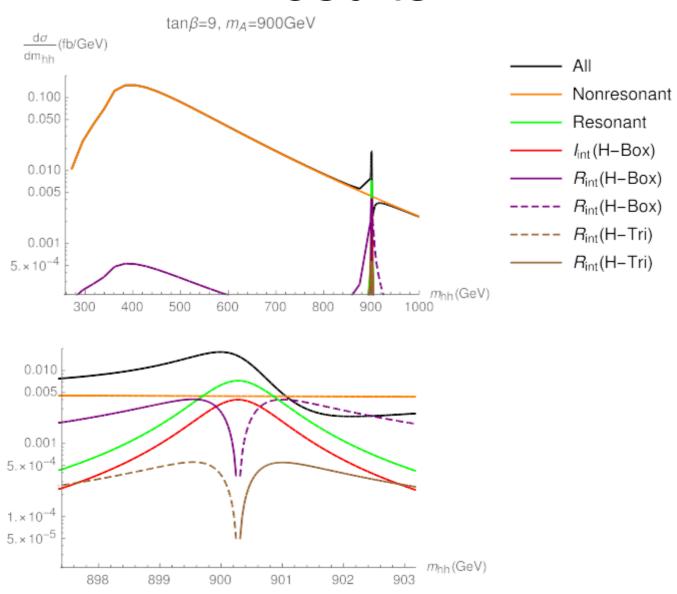

$$= 2(R_{int} + I_{int})$$

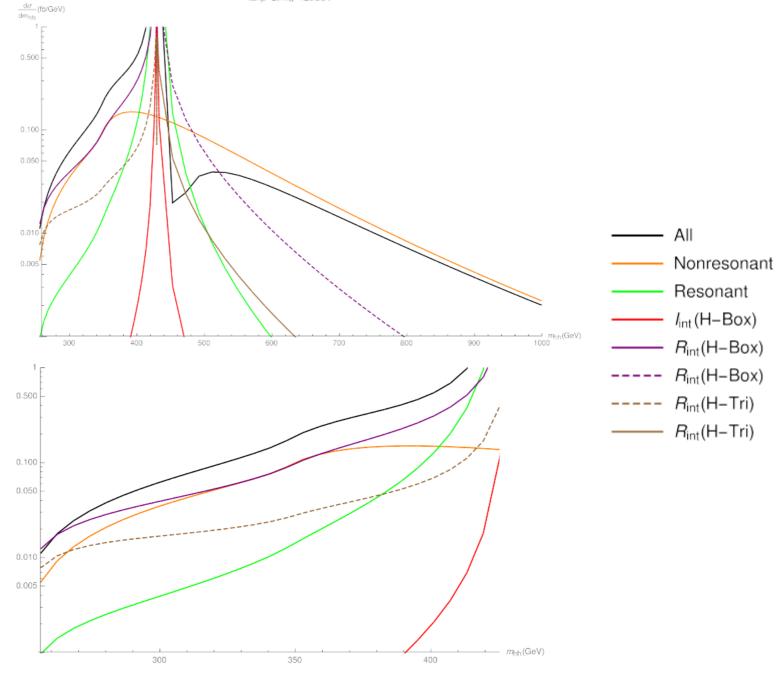
$$R_{int} = |A_{NR}||a_{Res}|\hat{s} \frac{\hat{s} - m_{H}^{2}}{(\hat{s} - m_{H}^{2})^{2} + (\Gamma_{H}m_{H})^{2}} \cos(\delta_{Res} - \delta_{NR})$$

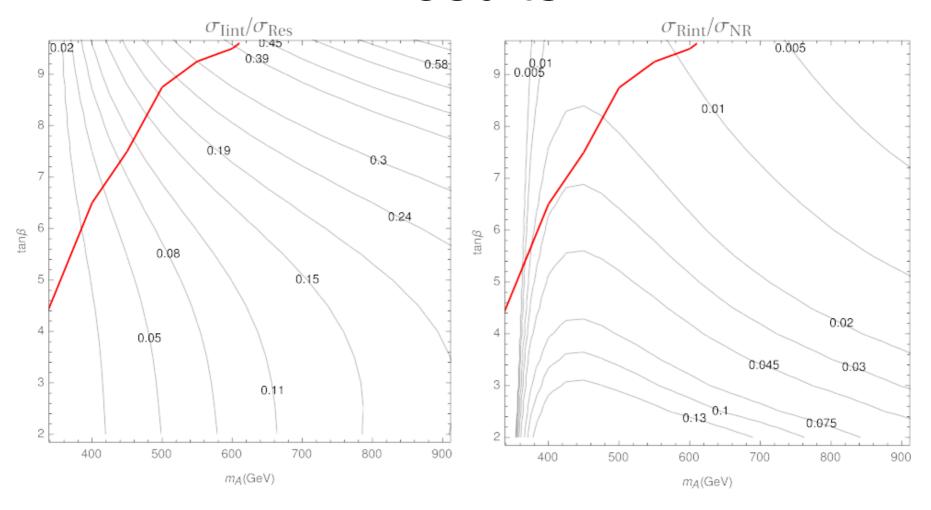

$$I_{int} = |A_{NR}||a_{Res}|\hat{s} \frac{\hat{s} - m_{H}^{2}}{(\hat{s} - m_{H}^{2})^{2} + (\Gamma_{H}m_{H})^{2}} \sin(\delta_{Res} - \delta_{NR})$$

Understanding Interference Term


Interference	$\delta_{ m Res}$	$\delta_{ m NR}$	$\delta_{ m Res}$ - $\delta_{ m NR}$		Interference Sign	
AH Ab	R _{int}	e .	$\delta_{\Delta} + \pi$	0	$\cos(\delta_{\text{Res}} - \delta_{\text{NR}}) = 1$	-/+
A^{H}_{Δ} A^{h}_{Δ}	I _{int}			0	$\sin(\delta_{\text{Res}} - \delta_{\text{NR}}) = 0$	0
A^{H}_{Δ} A^{h}_{\Box}	R _{int}	δ_{Δ} + π	δ_{\Box} + π	$\delta_{\scriptscriptstyle \Delta}$ - $\delta_{\scriptscriptstyle \square}$	$\cos(\delta_{\text{Res}} - \delta_{\text{NR}}) = \cos(\delta_{\Delta} - \delta_{\Box}) < 0$	+/-
	I _{int}				$\sin(\delta_{\text{Res}} - \delta_{\text{NR}}) = \sin(\delta_{\Delta} - \delta_{\square}) > 0$	+


Results


dashed curves represents destructive interferences


Results

Results

The region above the red line is excluded, according to [1].

Summary

- I_{int} is responsible for enhancing the total differential cross section around the $s^{1/2}=m_H$.
- $I_{int} = I_{int}(H-Box)$
- Differential cross section corresponds to $R_{int}(H-Box)$ is larger than $R_{int}(H-Tri)$, so the total interference is always constructive when $s^{1/2} < m_H$, and the total interference is destructive when $s^{1/2} > m_H + 2\Gamma_H$.

Summary

- $\sigma_{lint}/\sigma_{Res}$ increases as $tan\beta$ increases or m_A increases.
- $\sigma_{Rint}/\sigma_{NR}$ are not small when the value of m_A is around the nonresonant peak.

Future Work

- Collider phenomenology study
- (Which region is already excluded by current experimental data? How the study of interference effect will change the sensitivity of High Luminosity- and High Energy- LHC searches?)
- Consider influences of other SUSY particles.

References

[1]CMS PAS HIG-17-020

[2]CMS PAS HIG-17-031

[3]arXiv:1212.0560v2[hep-ph]

[4]E.W.N.Glover and J.J.van der Bij, Higgs Boson Pair Production via Gluon Fusion, Nucl. Phys. B309 (1988) 282-294

[5]arXiv:hep-ph/9603205v1

[6]arXiv:1801.00794v2[hep-ph]